CHAPTER

2

Air Conditioning

Subject/Page	Date COC	Subject/Page	Date	COC
21-EFFECTIVE PAGE	ES .	21-00-00 (cont.)		
1 thru 7	Sep 15/2023	13	Sep 15/2021	
8	BLANK	14	BLANK	
21-CONTENTS		21-20-00		
1	Sep 15/2021	1	Sep 15/2021	
2	Sep 15/2021	2	Sep 15/2021	
3	Sep 15/2022	3	Sep 15/2021	
4	Sep 15/2022	4	Sep 15/2021	
5	Sep 15/2021	5	Sep 15/2021	
6	Sep 15/2021	6	Sep 15/2021	
7	Sep 15/2021	7	Sep 15/2021	
8	May 15/2022	8	BLANK	
21-00-00	Way 10/2022	21-21-00		
1	Sep 15/2021	1	Sep 15/2021	
2	Sep 15/2021	2	Sep 15/2021	
3	Sep 15/2021	3	Sep 15/2021	
		4	Sep 15/2021	
4	Sep 15/2021	5	Sep 15/2021	
5	Sep 15/2021	6	BLANK	
6	May 15/2022	21-22-00	0 45/0004	
7	Sep 15/2021	1	Sep 15/2021	
8	Sep 15/2021	2	Sep 15/2021	
9	Sep 15/2021	3	Sep 15/2021	
10	Sep 15/2021	4	Sep 15/2021	
11	Sep 15/2021	5	Sep 15/2021	
12	Sep 15/2021	6	BLANK	

A = Added, R = Revised, D = Deleted, O = Overflow, C = Customer Originated Change

Subject/Page	Date	COC	Subject/Page	Date	COC
21-23-00			21-26-00 (cont.)		
1	Sep 15/2021		3	Sep 15/2021	
2	Sep 15/2021		4	BLANK	
3	Sep 15/2021		21-27-00		
4	Sep 15/2021		1	Sep 15/2021	
5	Sep 15/2021		R 2	Sep 15/2023	
6	BLANK		3	Sep 15/2021	
21-25-00			4	Sep 15/2021	
1	Sep 15/2021		5	Sep 15/2021	
2	Sep 15/2021		6	Sep 15/2021	
3	Sep 15/2021		7	Sep 15/2021	
4	Sep 15/2021		8	Sep 15/2021	
5	Sep 15/2021		9	Sep 15/2021	
6	Sep 15/2021		10	Sep 15/2021	
7	Sep 15/2021		11	Sep 15/2021	
-	•		12	Sep 15/2021	
8	Sep 15/2021		13	Sep 15/2021	
9	Sep 15/2021		14	Sep 15/2021	
10	Sep 15/2021		15	Sep 15/2021	
11	Sep 15/2021		16	Sep 15/2021	
12	Sep 15/2021		17	Sep 15/2021	
13	Sep 15/2021		18	Sep 15/2021	
14	BLANK		19	Sep 15/2021	
21-26-00			20	Sep 15/2021	
1	Sep 15/2021				
2	Sep 15/2021				

A = Added, R = Revised, D = Deleted, O = Overflow, C = Customer Originated Change

Subject/Page	Date	COC	Subject/Page	Date	COC
21-27-00 (cont.)			21-30-00 (cont.)		
21	Sep 15/2021		13	Sep 15/2021	
22	Sep 15/2021		14	Sep 15/2022	
23	Sep 15/2021		15	Sep 15/2022	
24	Sep 15/2021		16	Sep 15/2022	
25	Sep 15/2021		17	Sep 15/2022	
26	Sep 15/2021		18	Sep 15/2022	
27	Sep 15/2021		19	· ·	
28	Sep 15/2021		20	Sep 15/2022	
29	Sep 15/2021		20	Sep 15/2022	
30	BLANK			Sep 15/2022	
21-30-00			22	Sep 15/2022	
1	Sep 15/2021		23	Sep 15/2022	
2	Sep 15/2021		24	Sep 15/2022	
3	Sep 15/2021		25	Sep 15/2022	
4	Sep 15/2021		26	Sep 15/2022	
5	Sep 15/2021		27	Sep 15/2022	
6	Sep 15/2021		28	Sep 15/2022	
7	Sep 15/2021		29	Sep 15/2022	
8	Sep 15/2021		30	Sep 15/2022	
9	Sep 15/2021		31	Sep 15/2022	
10	Sep 15/2021		32	Sep 15/2022	
11	Sep 15/2021		33	Sep 15/2022	
12	Sep 15/2021		34	Sep 15/2022	
. =	30p 10/2021		35	Sep 15/2022	
			36	Sep 15/2022	

A = Added, R = Revised, D = Deleted, O = Overflow, C = Customer Originated Change

CHAPTER 21 AIR CONDITIONING

Subject/Page	Date	COC	Subject/Page	Date	COC
21-30-00 (cont.)			21-30-00 (cont.)		
37	Sep 15/2022		61	Sep 15/2022	
38	Sep 15/2022		62	Sep 15/2022	
39	Sep 15/2022		63	Sep 15/2022	
40	Sep 15/2022		64	BLANK	
41	Sep 15/2022		21-40-00		
42	•		1	Sep 15/2021	
	Sep 15/2022		2	Sep 15/2021	
43	Sep 15/2022		3	Sep 15/2021	
44	Sep 15/2022		4	BLANK	
45	Sep 15/2022		21-43-00		
46	Sep 15/2022		1	Sep 15/2021	
47	Sep 15/2022		2	Sep 15/2021	
48	Sep 15/2022		3	Sep 15/2021	
49	Sep 15/2022		4	BLANK	
50	Sep 15/2022		21-45-00		
51	Sep 15/2022		1	Sep 15/2021	
52	Sep 15/2022		2	Sep 15/2021	
53	Sep 15/2022		3	Sep 15/2021	
54	Sep 15/2022		4	Sep 15/2021	
55	Sep 15/2022		5	Sep 15/2021	
56	Sep 15/2022		6	Sep 15/2021	
57	Sep 15/2022		7	Sep 15/2021	
58	Sep 15/2022		8	BLANK	
59	Sep 15/2022				
60	Sep 15/2022				

A = Added, R = Revised, D = Deleted, O = Overflow, C = Customer Originated Change

Subject/Page	Date 0	Subject/Page	Date	COC
21-50-00		21-50-00 (cont.)		
1	Sep 15/2021	26	Sep 15/2021	
2	Sep 15/2021	27	Sep 15/2021	
3	Sep 15/2021		·	
4	Sep 15/2021	28	Sep 15/2021	
5	Sep 15/2021	29	Sep 15/2021	
6	Sep 15/2021	30	Sep 15/2021	
7	Sep 15/2021	31	Sep 15/2021	
8	Sep 15/2021	32	Sep 15/2021	
9	Sep 15/2021	33	Sep 15/2021	
10	Sep 15/2021	34	Sep 15/2021	
11	Sep 15/2021	35	Sep 15/2021	
12	Sep 15/2021	36	Sep 15/2021	
13	Sep 15/2021	37	Sep 15/2021	
14	Sep 15/2021	38	Sep 15/2021	
15	Sep 15/2021	39	Sep 15/2021	
16	Sep 15/2021		•	
17	Sep 15/2021	40	May 15/2022	
18	Sep 15/2021	41	Sep 15/2021	
19	Sep 15/2021	42	Sep 15/2021	
20	Sep 15/2021	43	Sep 15/2021	
21	Sep 15/2021	44	Sep 15/2021	
22	Sep 15/2021	45	Sep 15/2021	
23	Sep 15/2021	46	Sep 15/2021	
24	Sep 15/2021	47	Sep 15/2021	
25	Sep 15/2021	48	Sep 15/2021	

A = Added, R = Revised, D = Deleted, O = Overflow, C = Customer Originated Change

CHAPTER 21 AIR CONDITIONING

Subject/Page	Date	COC	Subject/Page	Date	COC
21-50-00 (cont.)			21-50-00 (cont.)		
49	Sep 15/2021		73	Sep 15/2021	
50	Sep 15/2021		74	BLANK	
51	Sep 15/2021		21-60-00		
52	Sep 15/2021		1	Sep 15/2021	
53	Sep 15/2021		2	Sep 15/2021	
54	Sep 15/2021		3	Sep 15/2021	
55	Sep 15/2021		4	Sep 15/2021	
56 56	•		5	May 15/2022	
	Sep 15/2021		6	May 15/2022	
57	Sep 15/2021		7	Sep 15/2021	
58	Sep 15/2021		8	May 15/2022	
59	Sep 15/2021		9	May 15/2022	
60	Sep 15/2021		10	Sep 15/2021	
61	Sep 15/2021		11	Sep 15/2021	
62	Sep 15/2021		12	Sep 15/2021	
63	Sep 15/2021		13	Sep 15/2021	
64	Sep 15/2021		14	Sep 15/2021	
65	Sep 15/2021		15	Sep 15/2021	
66	Sep 15/2021		16	Sep 15/2021	
67	Sep 15/2021		17	Sep 15/2021	
68	Sep 15/2021		18	Sep 15/2021	
69	Sep 15/2021		19	Sep 15/2021	
70	Sep 15/2021		20	Sep 15/2021	
71	Sep 15/2021				
72	Sep 15/2021				

A = Added, R = Revised, D = Deleted, O = Overflow, C = Customer Originated Change

CHAPTER 21 AIR CONDITIONING

Subject/Page	Date	COC	Subject/Page	Date	COC
21-60-00 (cont.)			21-60-00 (cont.)		
21	Sep 15/2021		45	May 15/2022	
22	Sep 15/2021		46	BLANK	
23	Sep 15/2021				
24	Sep 15/2021				
25	Sep 15/2021				
26	Sep 15/2021				
27	Sep 15/2021				
28	Sep 15/2021				
29	Sep 15/2021				
30	Sep 15/2021				
31	Sep 15/2021				
32	May 15/2022				
33	Sep 15/2021				
34	Sep 15/2021				
35	Sep 15/2021				
36	Sep 15/2021				
37	Sep 15/2021				
38	Sep 15/2021				
39	Sep 15/2021				
40	Sep 15/2021				
41	Sep 15/2021				
42	Sep 15/2021				
43	Sep 15/2021				
44	May 15/2022				

A = Added, R = Revised, D = Deleted, O = Overflow, C = Customer Originated Change

CH-SC-SU	SUBJECT	PAGE	EFFECT
21-00-00	AIR CONDITIONING - INTRODUCTION	2	SIAALL
21-00-00	AIR CONDITIONING - GENERAL DESCRIPTION	4	SIAALL
21-00-00	AIR CONDITIONING - CONTROL PANELS	6	SIAALL
21-00-00	AIR CONDITIONING - COMPONENT LOCATION	8	SIAALL
21-00-00	AIR CONDITIONING - FUNCTIONAL DESCRIPTION	11	SIAALL
21-20-00	AIR CONDITIONING - DISTRIBUTION - INTRODUCTION	2	SIAALL
21-20-00	AIR CONDITIONING - DISTRIBUTION - GENERAL DESCRIPTION	4	SIAALL
21-20-00	AIR CONDITIONING - DISTRIBUTION - OPERATION	6	SIAALL
21-21-00	AIR CONDITIONING - MAIN AIR DISTRIBUTION - INTRODUCTION	2	SIAALL
21-21-00	AIR CONDITIONING - MAIN AIR DISTRIBUTION - GROUND CONDITIONED AIR CONNECTOR	4	SIA ALL
21-22-00	AIR CONDITIONING - FLIGHT COMPARTMENT CONDITIONED AIR DISTRIBUTION - INTRODUCTION	2	SIAALL
21-22-00	AIR CONDITIONING - FLIGHT COMPT COND AIR DISTRIBUTION - WINDSHIELD AND FOOT AIR OUTLET VALVE	4	SIA ALL
21-23-00	AIR CONDITIONING - PASSENGER CABIN CONDITIONED AIR DISTRIBUTION - INTRODUCTION	2	SIAALL
21-23-00	AIR CONDITIONING - PASSENGER CABIN CONDITIONED AIR DISTRIBUTION - OVERHEAD DISTRIBUTION DUCT	4	SIAALL
21-25-00	AIR CONDITIONING - RECIRCULATION SYSTEM - INTRODUCTION	2	SIAALL
21-25-00	AIR CONDITIONING - RECIRCULATION SYSTEM - RECIRCULATION AIR FILTER	4	SIA ALL
21-25-00	AIR CONDITIONING - RECIRCULATION SYSTEM - RECIRCULATION FAN	6	SIAALL

CH-SC-SU	SUBJECT	PAGE	EFFECT
21-25-00	AIR CONDITIONING - RECIRCULATION SYSTEM - FAN CHECK VALVE	8	SIA ALL
21-25-00	AIR CONDITIONING - RECIRCULATION SYSTEM - RIGHT RECIRCULATION FAN - FUNCTIONAL DESCRIPTION	10	SIA ALL
21-25-00	AIR CONDITIONING - RECIRCULATION SYSTEM - LEFT RECIRCULATION FAN - FUNCTIONAL DESCRIPTION	12	SIA ALL
21-26-00	AIR CONDITIONING - VENTILATION SYSTEM - GALLEY VENTILATION MUFFLER	2	SIA ALL
21-27-00	AIR CONDITIONING - EQUIPMENT COOLING SYSTEM - INTRODUCTION	2	SIA ALL
21-27-00	AIR CONDITIONING - EQUIPMENT COOLING SYSTEM - GENERAL DESCRIPTION	4	SIA ALL
21-27-00	AIR CONDITIONING - EQUIPMENT COOLING SYSTEM - COMPONENT LOCATION	6	SIA ALL
21-27-00	AIR CONDITIONING - EQUIPMENT COOLING SYSTEM - OPERATION	8	SIA ALL
21-27-00	AIR CONDITIONING - EQUIPMENT COOLING SYSTEM - AIR FILTER	10	SIA ALL
21-27-00	AIR CONDITIONING - EQUIPMENT COOLING SYSTEM - SUPPLY AND EXHAUST FANS	12	SIA ALL
21-27-00	AIR CONDITIONING - EQUIPMENT COOLING SYSTEM - LOW FLOW DETECTOR	16	SIA ALL
21-27-00	AIR CONDITIONING - EQUIPMENT COOLING SYSTEM - SUPPLY FAN - FUNCTIONAL DESCRIPTION	18	SIA ALL
21-27-00	AIR CONDITIONING - EQUIPMENT COOLING SYSTEM - EXHAUST FAN - FUNCTIONAL DESCRIPTION	20	SIA ALL
21-27-00	AIR CONDITIONING - EQUIPMENT COOLING SYSTEM - LOW FLOW DETECTOR - FUNCTIONAL DESCRIPTION	22	SIA ALL
21-27-00	AIR CONDITIONING - EQUIPMENT COOLING SYSTEM - OEV - ELECTRICAL FUNCTIONAL DESCRIPTION	25	SIA ALL

CH-SC-SU	SUBJECT	PAGE	EFFECT
21-27-00	AIR CONDITIONING - EQUIPMENT COOLING SYSTEM - EXHAUST FANS	28	SIA ALL
21-30-00	AIR CONDITIONING - PRESSURIZATION CONTROL - INTRODUCTION	2	SIA ALL
21-30-00	AIR CONDITIONING - PRESSURIZATION CONTROL - GENERAL DESCRIPTION	4	SIA ALL
21-30-00	AIR CONDITIONING - PRESSURIZATION CONTROL - AUTO MODE FLIGHT PROFILE - OPERATION	7	SIA ALL
21-30-00	AIR CONDITIONING - PRESSURIZATION CONTROL - COMPONENT LOCATION	10	SIA ALL
21-30-00	AIR CONDITIONING - PRESSURIZATION CONTROL - INTERFACE	12	SIA ALL
21-30-00	AIR CONDITIONING - PRESSURIZATION CONTROL - CABIN PRESSURE CONTROL MODULE AND CABIN ALT PANEL	15	SIA ALL
21-30-00	AIR CONDITIONING - PRESSURIZATION CONTROL - CABIN PRESSURE CONTROLLER	18	SIA ALL
21-30-00	AIR CONDITIONING - PRESSURIZATION CONTROL - CPC - BITE - MAIN MENU	20	SIA ALL
21-30-00	AIR CONDITIONING - PRESSURIZATION CONTROL - CPC - BITE - EXISTING FAULTS	22	SIA ALL
21-30-00	AIR CONDITIONING - PRESSURIZATION CONTROL - CPC - BITE - FAULT HISTORY	24	SIA ALL
21-30-00	AIR CONDITIONING - PRESSURIZATION CONTROL - CPC - BITE - GROUND TESTS - SYSTEM TEST	26	SIA ALL
21-30-00	AIR CONDITIONING - PRESSURIZATION CONTROL - CPC - BITE - GROUND TESTS - DISPLAY TEST	28	SIA ALL
21-30-00	AIR CONDITIONING - PRESSURIZATION CONTROL - CPC - BITE - SYSTEM STATUS MENU	31	SIA ALL

CH-SC-SU	SUBJECT	PAGE	EFFECT
21-30-00	AIR CONDITIONING - PRESSURIZATION CONTROL - CPC - BITE - SYSTEM TEST AND CLEAR	34	SIA ALL
21-30-00	AIR CONDITIONING - PRESSURIZATION CONTROL - AFT OUTFLOW VALVE	36	SIA ALL
21-30-00	AIR CONDITIONING - PRESSURIZATION CONTROL - AUTO MODE - FUNCTIONAL DESCRIPTION	38	SIA ALL
21-30-00	AIR CONDITIONING - PRESSURIZATION CONTROL - AUTO FAIL	40	SIAALL
21-30-00	AIR CONDITIONING - PRESSURIZATION CONTROL - INDICATION - FUNCTIONAL DESCRIPTION	42	SIA ALL
21-30-00	AIR CONDITIONING - PRESSURIZATION CONTROL - OFF SCHED DESCENT LIGHT	44	SIA ALL
21-30-00	AIR CONDITIONING - PRESSURIZATION CONTROL - MANUAL MODE - GENERAL DESCRIPTION	46	SIA ALL
21-30-00	AIR CONDITIONING - PRESSURIZATION CONTROL - MANUAL MODE - FUNCTIONAL DESCRIPTION	48	SIA ALL
21-30-00	AIR CONDITIONING - PRESSURIZATION CONTROL - POSITIVE PRESSURE RELIEF VALVE	50	SIA ALL
21-30-00	AIR CONDITIONING - PRESSURIZATION CONTROL - NEGATIVE PRESSURE RELIEF VALVE	52	SIA ALL
21-30-00	AIR CONDITIONING - PRESSURIZATION CONTROL - CARGO COMPARTMENT BLOWOUT PANEL	54	SIA ALL
21-30-00	AIR CONDITIONING - PRESSURIZATION CONTROL - PRESSURE EQUALIZATION VALVE	58	SIA ALL
21-30-00	AIR CONDITIONING - PRESSURIZATION CONTROL - CABIN ALTITUDE WARNING SWITCH	60	SIA ALL
21-30-00	AIR CONDITIONING - PRESSURIZATION CONTROL - CABIN ALT WARNING SWITCH - FUNCTIONAL DESCRIPTION	62	SIA ALL

CH-SC-SU	SUBJECT	PAGE	EFFECT
21-40-00	AIR CONDITIONING - HEATING - INTRODUCTION	2	SIA ALL
21-43-00	OVERBOARD EXHAUST VALVE CONTROL - OVERBOARD EXHAUST VALVE	2	SIA ALL
21-45-00	AIR CONDITIONING - SUPPLEMENTAL HEATING - DOOR AREA HEATER	2	SIAALL
21-45-00	AIR CONDITIONING - SUPPLEMENTAL HEATING - EMERGENCY ESCAPE DOOR - HEATER BLANKETS	4	SIA ALL
21-45-00	AIR CONDITIONING - SUPPLEMENTAL HEATING - FUNCTIONAL DESCRIPTION	6	SIA ALL
21-50-00	AIR CONDITIONING - COOLING - INTRODUCTION	2	SIA ALL
21-50-00	AIR CONDITIONING - COOLING - GENERAL DESCRIPTION	4	SIA ALL
21-50-00	AIR CONDITIONING - COOLING - COMPONENT LOCATION	6	SIA ALL
21-50-00	AIR CONDITIONING - COOLING - AIR CONDITIONING ACCESSORY UNITS	8	SIA ALL
21-50-00	AIR CONDITIONING - COOLING - FLOW CONTROL AND SHUTOFF VALVE	10	SIA ALL
21-50-00	AIR CONDITIONING - COOLING - FLOW CONTROL AND SHUTOFF VALVE - MECHANICAL FUNCTIONAL DESCRIPTION	13	SIA ALL
21-50-00	AIR CONDITIONING - COOLING - FLOW CONTROL AND SHUTOFF VALVE - ELECTRICAL FUNCTIONAL DESCRIPTION	17	SIA ALL
21-50-00	AIR CONDITIONING - COOLING - PRIMARY HEAT EXCHANGER AND PLENUM/DIFFUSER ASSEMBLY	20	SIA ALL
21-50-00	AIR CONDITIONING - COOLING - HEAT EXCHANGER TEMPERATURE SENSOR	22	SIA ALL
21-50-00	AIR CONDITIONING - COOLING - RAM AIR DUCTS	24	SIA ALL
21-50-00	AIR CONDITIONING - COOLING - RAM AIR ACTUATOR	26	SIA ALL

CHAPTER 21 AIR CONDITIONING

CH-SC-SU	SUBJECT	PAGE	EFFECT
21-50-00	AIR CONDITIONING - COOLING - RAM AIR INLET DOOR ASSEMBLY	28	SIAALL
21-50-00	AIR CONDITIONING - COOLING - RAM AIR TEMPERATURE SENSOR	30	SIA ALL
21-50-00	AIR CONDITIONING - COOLING - RAM AIR SYSTEM - FUNCTIONAL DESCRIPTION	32	SIA ALL
21-50-00	AIR CONDITIONING - COOLING - AIR CYCLE MACHINE	34	SIAALL
21-50-00	AIR CONDITIONING - COOLING - SECONDARY HEAT EXCHANGER AND PLENUM/DIFFUSER ASSEMBLY	36	SIA ALL
21-50-00	AIR CONDITIONING - COOLING - WATER EXTRACTOR DUCT	38	SIAALL
21-50-00	AIR CONDITIONING - COOLING - REHEATER	40	SIA ALL
21-50-00	AIR CONDITIONING - COOLING - CONDENSER	42	SIA ALL
21-50-00	AIR CONDITIONING - COOLING - WATER EXTRACTOR	44	SIA ALL
21-50-00	AIR CONDITIONING - COOLING - WATER COLLECTION MANIFOLD	46	SIA ALL
21-50-00	AIR CONDITIONING - COOLING - WATER SPRAY NOZZLE	48	SIA ALL
21-50-00	AIR CONDITIONING - COOLING - HIGH PRESSURE WATER SEPARATOR MIX MUFF	50	SIA ALL
21-50-00	AIR CONDITIONING - COOLING - CONDITIONED AIR CHECK VALVE	52	SIA ALL
21-50-00	AIR CONDITIONING - COOLING - PACK TEMPERATURE SENSOR	54	SIA ALL
21-50-00	AIR CONDITIONING - COOLING - MIX MANIFOLD TEMPERATURE SENSOR	56	SIA ALL
21-50-00	AIR CONDITIONING - COOLING - TEMPERATURE CONTROL VALVE	58	SIA ALL
21-50-00	AIR CONDITIONING - COOLING - STANDBY TEMPERATURE CONTROL VALVE	60	SIA ALL

CH-SC-SU	SUBJECT	PAGE	EFFECT
21-50-00	AIR CONDITIONING - COOLING - STANDBY TEMPERATURE CONTROL VALVE - FUNCTIONAL DESCRIPTION	62	SIA ALL
21-50-00	AIR CONDITIONING - COOLING - AUTO CONTROL - FUNCTIONAL DESCRIPTION	64	SIA ALL
21-50-00	AIR CONDITIONING - COOLING - STANDBY CONTROL - FUNCTIONAL DESCRIPTION	66	SIA ALL
21-50-00	AIR CONDITIONING - COOLING - PACK OVERHEAT SWITCHES	68	SIA ALL
21-50-00	AIR CONDITIONING - COOLING - PACK PROTECTION - FUNCTIONAL DESCRIPTION	70	SIA ALL
21-50-00	AIR CONDITIONING - COOLING - FUNCTIONAL DESCRIPTION	72	SIA ALL
21-60-00	AIR CONDITIONING - TEMPERATURE CONTROL - INTRODUCTION	2	SIA ALL
21-60-00	AIR CONDITIONING - TEMPERATURE CONTROL - GENERAL DESCRIPTION	5	SIA ALL
21-60-00	AIR CONDITIONING - TEMPERATURE CONTROL - OPERATION	8	SIA ALL
21-60-00	AIR CONDITIONING - TEMPERATURE CONTROL - CABIN TEMPERATURE SENSOR ASSEMBLY	10	SIA ALL
21-60-00	AIR CONDITIONING - TEMPERATURE CONTROL - DUCT TEMPERATURE SENSOR	12	SIA ALL
21-60-00	AIR CONDITIONING - TEMPERATURE CONTROL - INTEGRATED AIR SYSTEMS CONTROLLER	14	SIA ALL
21-60-00	AIR CONDITIONING - TEMPERATURE CONTROL - TRIM AIR CHECK VALVE	16	SIA ALL
21-60-00	AIR CONDITIONING - TEMPERATURE CONTROL - TRIM AIR PRESSURE REGULATING AND SHUTOFF VALVE	18	SIA ALL
21-60-00	AIR CONDITIONING - TEMPERATURE CONTROL - TRIM AIR PRSOV - FUNCTIONAL DESCRIPTION	20	SIA ALL

CHAPTER 21 AIR CONDITIONING

CH-SC-SU	SUBJECT	PAGE	EFFECT
21-60-00	AIR CONDITIONING - TEMPERATURE CONTROL - ZONE TRIM AIR MODULATING VALVE	22	SIA ALL
21-60-00	AIR CONDITIONING - TEMPERATURE CONTROL - FLIGHT COMPARTMENT - FUNCTIONAL DESCRIPTION	24	SIAALL
21-60-00	AIR CONDITIONING - TEMPERATURE CONTROL - PASSENGER COMPARTMENT - FUNCTIONAL DESCRIPTION	26	SIAALL
21-60-00	AIR CONDITIONING - TEMPERATURE CONTROL - DUCT OVERHEAT SWITCH	28	SIA ALL
21-60-00	AIR CONDITIONING - TEMPERATURE CONTROL - FUNCTIONAL DESCRIPTION	31	SIA ALL
21-60-00	AIR CONDITIONING - TEMPERATURE CONTROL - BALANCED MODE - FUNCTIONAL DESCRIPTION	34	SIA ALL
21-60-00	AIR CONDITIONING - TEMPERATURE CONTROL - UNBALANCED MODE - FUNCTIONAL DESCRIPTION	36	SIA ALL
21-60-00	AIR CONDITIONING - TEMPERATURE CONTROL - ZONE TEMP INDICATION - FUNCTIONAL DESCRIPTION	39	SIA ALL
21-60-00	AIR CONDITIONING - TEMPERATURE CONTROL - PACK LIGHT INDICATION - FUNCTIONAL DESCRIPTION	42	SIA ALL
21-60-00	AIR CONDITIONING - TEMPERATURE CONTROL - TEMPERATURE BULB	44	SIA ALL

THIS PAGE IS INTENTIONALLY LEFT BLANK

21-00-00

AIR CONDITIONING - INTRODUCTION

Purpose

The air conditioning system controls the interior environment of the airplane for flight crew, passengers, and equipment.

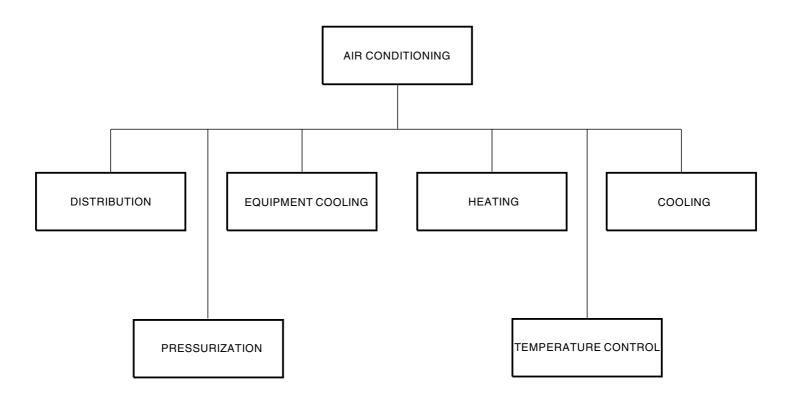
Air Conditioning Sub-Systems

These are the air conditioning sub-systems:

- Distribution
- Pressurization
- · Equipment cooling
- Heating
- Cooling
- Temperature control.

Abbreviations and Acronyms

- A/C air conditioning
- · ACAU air conditioning accessory unit
- ASC air systems controller
- C Celsius
- clng cooling
- CPC cabin pressure controller
- EE electronic equipment
- F Fahrenheit
- FLT COMPT flight compartment
- IASC Integrated Air Systems Controller
- PFTC pack flow and temperature controller
- TCV temperature control valve


EFFECTIVITY

21-00-00

SIA ALL

AIR CONDITIONING - INTRODUCTION

2368351 S00061517211_V1

AIR CONDITIONING - INTRODUCTION

SIA ALL

21-00-00

Page 3 Sep 15/2021

AIR CONDITIONING - GENERAL DESCRIPTION

General

These flight compartment panels let you control the air conditioning system:

- Air conditioning/bleed air controls panel, P5-10
- Cabin temperature panel, P5-17
- · Equipment cooling panel, P5
- Cabin pressure control panel, P5-6.

These components in the EE compartment control the functions of the air conditioning system:

- Two integrated air systems controllers (IASC)
- Two air conditioning accessory units (ACAU)
- Cabin pressure controllers (CPC).

Integrated Air Systems Controller

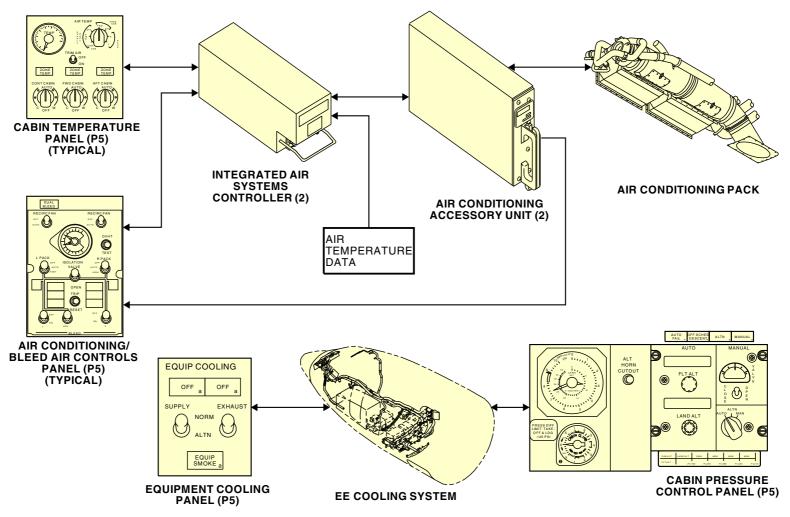
The integrated air systems controller, which houses the pack flow and temperature controllers and the air supply controllers, control these functions of the air conditioning system:

- · Pack cooling temperature
- Trim air, regulation, on or off
- Zone temperature.

Air Conditioning Accessory Unit

The air conditioning accessory units are the interface for the airplane operational logic and the air system.

Cabin Pressure Controller


The cabin pressure controllers control the cabin pressure function of the air conditioning system.

SIA ALL

21-00-00

AIR CONDITIONING - GENERAL DESCRIPTION

AIR CONDITIONING - GENERAL DESCRIPTION

2368352 S00061517213 V4

SIA ALL EFFECTIVITY 21-00-00

AIR CONDITIONING - CONTROL PANELS

General

These flight compartment panels on the P5 forward overhead panel let you control the air conditioning subsystems:

- Cabin temperature panel, P5-17
- Air conditioning/bleed air controls panel, P5-10
- Equipment cooling panel, P5
- Cabin pressure control panel, P5-6
- Cabin altitude panel, P5-16.

Cabin Temperature Panel

These controls and indications are on the cabin temperature panel:

- · Control cabin temperature control
- Forward cabin temperature control
- · Aft cabin temperature control
- · Trim air switch
- · Temperature indication and selection
- · Duct overheat indication.

Air Conditioning/Bleed Air Controls Panel

These controls and indications are on the air conditioning/bleed air controls panel:

- · Recirculation fans switches
- · Cooling pack switches
- · Pack overheat and fault indication
- · Pack reset.

Equipment Cooling Panel

These controls and indications are on the equipment cooling panel:

· Supply and exhaust fans switches

EFFECTIVITY

No cooling indication.

Cabin Pressure Control Panel

These controls and indication are on the cabin pressure control panel:

- · Landing altitude selector
- Flight altitude selector
- · Mode selector
- · Outflow valve position indicator
- · Manual control toggle switch.

Cabin Altitude Panel

These controls and indications are on the cabin altitude panel:

- · Cabin altitude
- · Cabin differential pressure
- · Rate of change of cabin altitude
- · Altitude horn cutout switch.

21-00-00

AIR CONDITIONING - CONTROL PANELS

AIR CONDITIONING - CONTROL PANELS

21-00-00

SIA ALL

EFFECTIVITY

AIR CONDITIONING - COMPONENT LOCATION

Distribution

The distribution system has these components in the distribution compartment (aft of the forward cargo compartment):

- · Main distribution manifold
- · Recirculation fans
- · Ground conditioned air connection.

The equipment cooling system has components in the EE compartment, the forward equipment compartment, and the flight compartment.

Cooling System

The two air conditioning packs are in the air conditioning compartments. The air conditioning compartments are on the left and right sides of the keel beam in the wing-to-body area. Access is from the bottom of the airplane fuselage.

Temperature Control

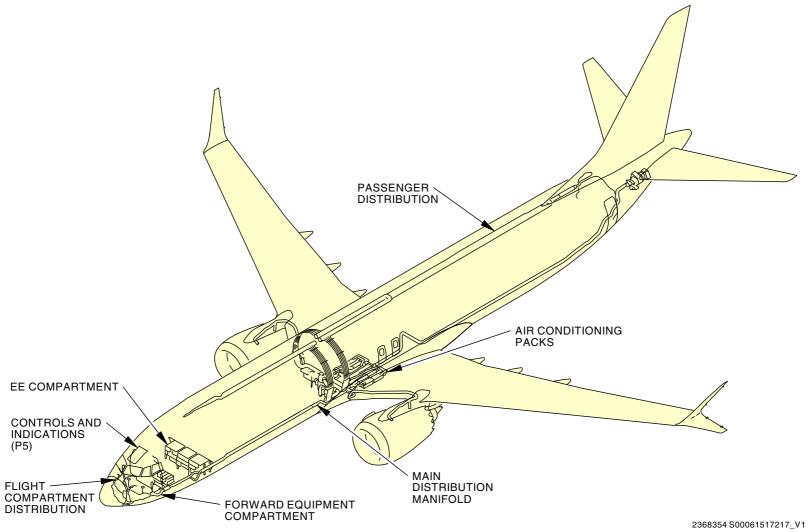
The temperature control system has components in these areas of the airplane:

- Passenger distribution ducting
- EE compartment
- · Flight compartment.

Pressurization

SIA ALL

The pressurization system has components in these areas of the airplane:


- Flight compartment
- EE compartment
- · Aft cargo compartment.

EFFECTIVITY

21-00-00

AIR CONDITIONING - COMPONENT LOCATION

AIR CONDITIONING - COMPONENT LOCATION

EFFECTIVITY SIA ALL

21-00-00

Page 9 Sep 15/2021

THIS PAGE IS INTENTIONALLY LEFT BLANK

21-00-00

AIR CONDITIONING - FUNCTIONAL DESCRIPTION

General

These are the primary parts of the air conditioning (A/C) system that have an effect on the supply of fresh air or the recirculation of conditioned air:

- · Pack flow control
- · Pack cooling system
- Zone temperature control
- Recirculation
- Air distribution.

The primary parts of the A/C system have these functions:

- Control fresh air flow for airplane pressurization and ventilation
- Control the flight compartment and passenger cabin temperature
- Filter and recirculate cabin air for ventilation.

Pack Flow Control

This part of the A/C system controls the quantity of fresh air that flows into the airplane. The control is by a flow control and shutoff valve.

The quantity of fresh air necessary for ventilation is more than for pressurization. The ventilation quantity is based on a fixed value for the crew and allowable leakage, and on the number of passenger seats.

Usually, the left and right flow control systems provide the same quantity of fresh air. Fresh air flow changes when airplane conditions change.

See the pack flow control section for more information about the pack flow control systems.

Pack Cooling System

EFFECTIVITY

This part of the A/C system removes water as necessary and controls the temperature of the fresh air before it flows into the air distribution part of the air conditioning system. The primary components are the left and right packs.

The usual control for the left pack makes sure that it supplies air at a temperature that gives the necessary cooling for the flight compartment.

The control for the right pack makes sure that it supplies air at a temperature that gives the necessary cooling for the mix manifold.

See the pack flow control and pack cooling system section for more information about the pack flow control and pack cooling systems.

Zone Temperature Control

This part of the A/C system increases the temperature of the conditioned air that flows into the occupied areas of the airplane. It also gives pressure regulation and on/off control for the trim air part of the system. These are the primary components:

- Trim air pressure regulating and shutoff valve
- Zone trim air modulating valves
- · Temperature sensors.

The system calculates the necessary pack outlet temperatures to satisfy the cooling needs to the flight compartment and the mix manifold. The system also calculates the heating necessary for each temperature control zone. These are the temperature control zones:

- Flight compartment zone
- Passenger cabin zones (2).

Air from the pneumatic system adds heat to a zone that needs warmer air. The trim air pressure regulating and shutoff valve gives on/off control and keeps trim air pressure at a necessary limit.

See the trim air pressure regulation and shutoff control section for more information about the trim air pressure regulation and shutoff control systems. (SECTION 21-60)

The zone trim air modulating valves control the heat added to the conditioned air for each zone.

See the zone temperature control section for more information about the zone temperature control systems. (SECTION 21-60)

21-00-00

SIA ALL

AIR CONDITIONING - FUNCTIONAL DESCRIPTION

Recirculation

This part of the A/C system recycles approximately 50 percent of the cabin air for ventilation purposes. This reduces the quantity of fresh air from the pneumatic system for ventilation. The left and right recirculation fans and filters are the primary components.

Recirculated air is filtered by High Efficiency Particulate Air (HEPA) filters before returning to the cabin. HEPA filters are highly effective at removing particulates such as viruses, bacteria and fungi from recirculated air.

See the recirculation section for more information about the recirculation systems. (SECTION 21-25)

Air Distribution

This part of the A/C system moves conditioned air from the packs or ground air source to the temperature control zones. These are the primary components:

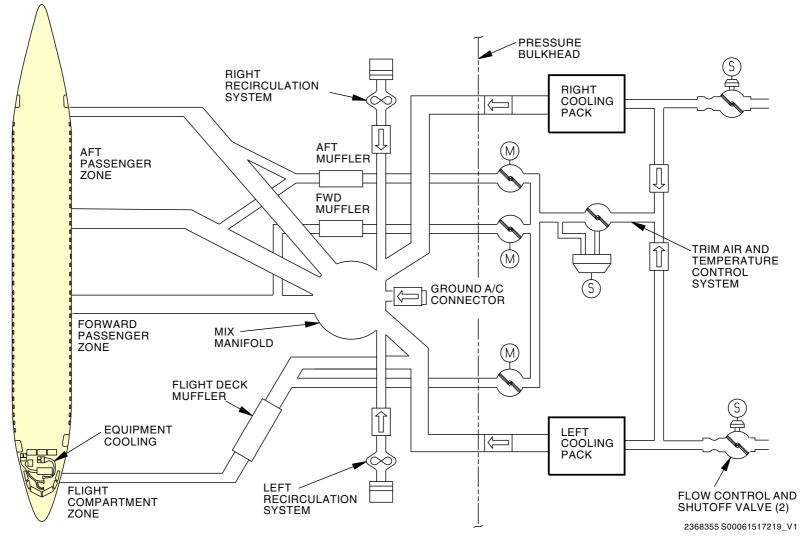
- · Ground air connector
- Mix manifold
- · Distribution ducts/risers.

The air distribution system provides filtered, recirculated air mixed with fresh air. This is approximately a 50/50 mix.

Air distribution ducts and return air grilles are along both sides of the length of the cabin. Airflow is provided from the top of the cabin and exhausted through the return air grilles where the sidewall meets the floor. Air flows primarily from the ceiling to the floor, to minimize net flows along the length of the cabin.

The total volume of air in the cabin is exchanged every two to three minutes, and about 20 to 30 times per hour. Air constantly flows in and out of the cabin, and continuously exits the airplane through outflow valves in the forward and aft sections of the airplane.

See the distribution section for more information about the air distribution systems. (SECTION 21-20)


EFFECTIVITY

21-00-00

SIA ALL

AIR CONDITIONING - FUNCTIONAL DESCRIPTION

AIR CONDITIONING - FUNCTIONAL DESCRIPTION

SIA ALL
D633AM102-SIA

21-00-00

Page 13 Sep 15/2021

THIS PAGE IS INTENTIONALLY LEFT BLANK

21-20-00

AIR CONDITIONING - DISTRIBUTION - INTRODUCTION

Purpose

The distribution system has these functions:

- Divides conditioned air to the three airplane zones
- · Reduces engine bleed requirements
- · Removes offensive air from lavatories and galleys
- Supplies cooling air to electronic equipment.

Main Air Distribution

The main air distribution components send conditioned air to these zones:

- Flight compartment
- Forward passenger compartment
- · Aft passenger compartment.

Conditioned air comes from these sources:

- · Ground supplied conditioned air
- Air conditioning packs
- · Recirculation system.

Flight Compartment Distribution

The flight compartment has an independent source of conditioned air. This provides a constant supply of fresh air circulation. Controls in the flight compartment permit selection of temperature and flow rates.

Passenger Cabin Conditioned Air Distribution

The passenger compartment has two zones for independently controlled air temperature. There are supply ducts that supply a constant flow to all areas. In each zone, the conditioned air goes to these areas:

- Passenger cabin
- Lavatories
- Galleys.

SIA ALL

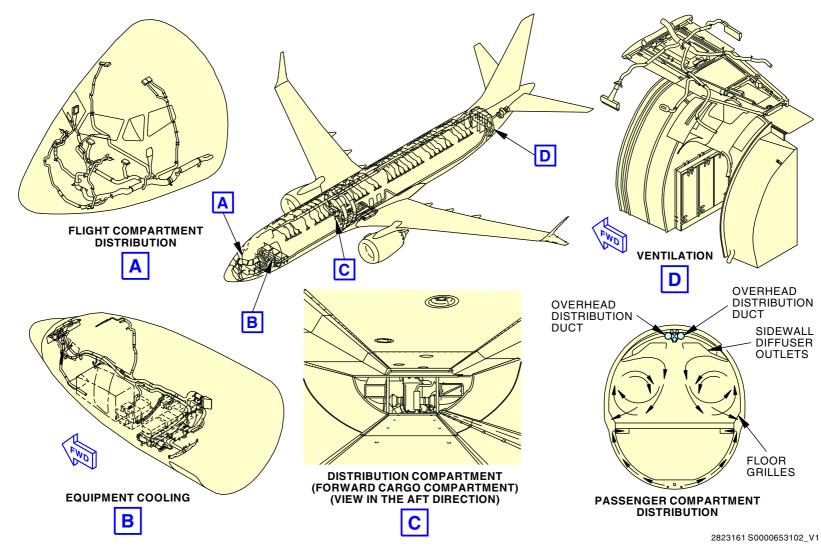
Recirculation System

The recirculation system permits ventilation of air in the passenger cabin areas. The recirculation system decreases the use of engine bleed air. This enables better thrust management and decreases fuel consumption.

Ventilation System

Vent ports adjacent to the lavatory and galleys let air in those areas flow overboard.

Equipment Cooling


The equipment cooling system uses fans to move air around equipment in the EE compartment and flight compartment.

EFFECTIVITY

21-20-00

AIR CONDITIONING - DISTRIBUTION - INTRODUCTION

AIR CONDITIONING - DISTRIBUTION - INTRODUCTION

21-20-00

21-20-00-001

SIA ALL

EFFECTIVITY

AIR CONDITIONING - DISTRIBUTION - GENERAL DESCRIPTION

General

Equipment Cooling System

The A/C distribution system supplies conditioned air to the passenger and flight compartments.

The equipment cooling system removes heat from the equipment in the main equipment center and the flight compartment.

Main Air Distribution

The main air distribution system gets air from these sources:

- · Air conditioning packs
- · Ground conditioned air
- · Recirculation system.

The mix manifold collects and mixes air from any combination of the sources.

Flight Compartment Distribution

The flight compartment gets conditioned air from the left pack and the mix manifold. A duct on the left side of the airplane transmits the air. The flight compartment has supply ducts and outlets to control the air flow at each station.

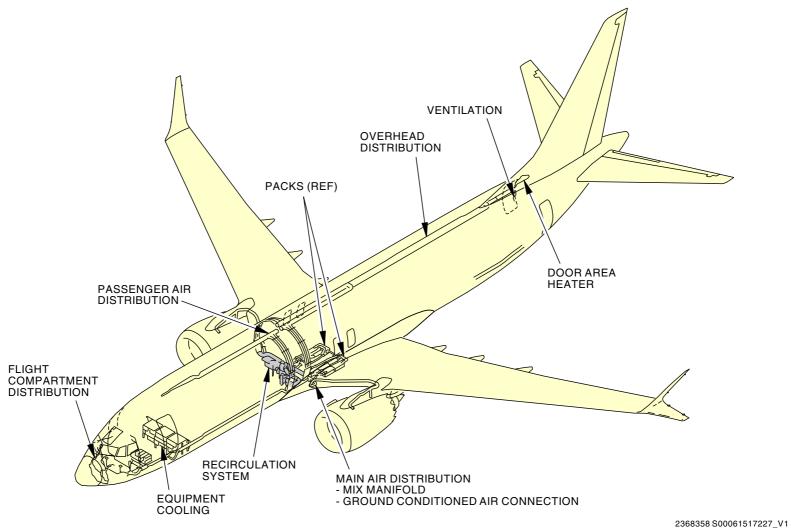
Passenger Compartment Distribution

EFFECTIVITY

The passenger conditioned air distribution gets air from the mix manifold. The air goes through riser ducts and up side walls to an overhead distribution duct. Outlets along the side walls and the center of the ceiling divide the air for symmetrical supply.

Recirculation System

The recirculation system uses two fans to move air from the passenger compartment to the mix manifold. This system reduces the amount of air that the packs need to supply.


Ventilation

The ventilation system uses differential pressure to pull air out of the airplane. The air moves through overboard vents from the cabin galley and the lavatory areas.

21-20-00

AIR CONDITIONING - DISTRIBUTION - GENERAL DESCRIPTION

AIR CONDITIONING - DISTRIBUTION - GENERAL DESCRIPTION

SIA ALL EFFECTIVITY 21-20-00

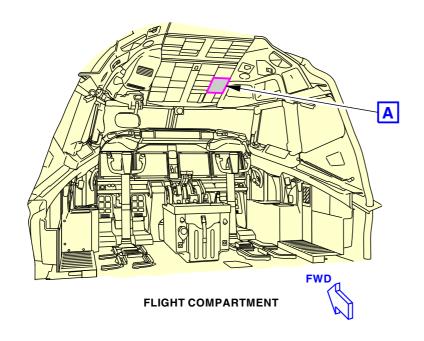
AIR CONDITIONING - DISTRIBUTION - OPERATION

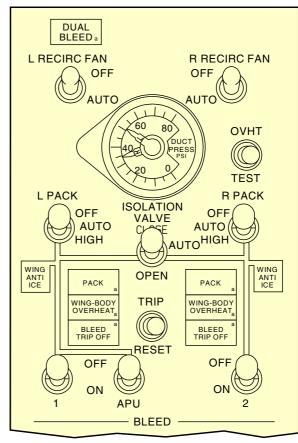
General

The controls for the air conditioning distribution system are on the air conditioning/bleed air controls panel in the flight compartment.

Recirculation System

The recirculation fans are enabled when you move the recirculation fan switches to the AUTO position. Recirculation fan operation depends on air conditioning pack operation.


EFFECTIVITY


21-20-00

SIA ALL

AIR CONDITIONING - DISTRIBUTION - OPERATION

AIR CONDITIONING/BLEED AIR CONTROLS PANEL (P5) (TYPICAL)

2368359 S00061517229_V2

AIR CONDITIONING - DISTRIBUTION - OPERATION

SIA ALL

21-20-00

THIS PAGE IS INTENTIONALLY LEFT BLANK

21-21-00

AIR CONDITIONING - MAIN AIR DISTRIBUTION - INTRODUCTION

General

The two air conditioning packs supply the main distribution manifold with conditioned air. The main distribution manifold supplies air to the passenger compartment through riser ducts and an overhead distribution manifold. A moisture drain line lets moisture in the main distribution manifold drain overboard.

Location

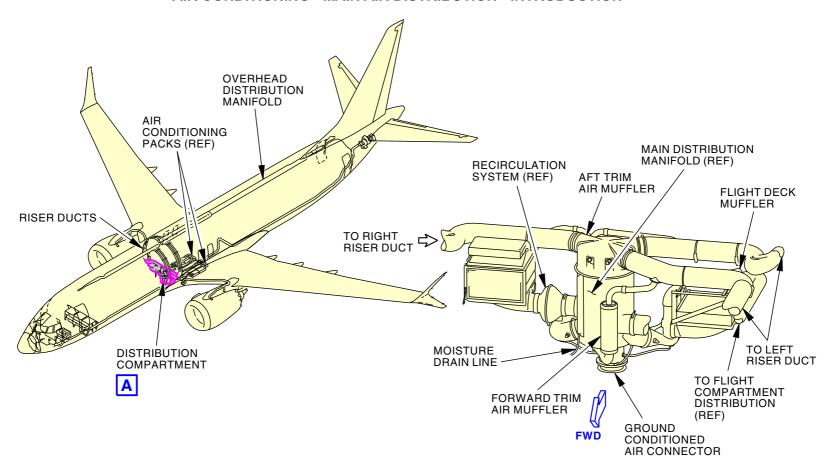
The main air distribution components are in the distribution compartment aft of the forward cargo compartment. There are manifolds and ducts along the sidewalls and above the ceiling area of the passenger cabin.

Interfaces

The main air distribution subsystem has interfaces with these sub-subsystems:

- · Recirculation system
- · Ground conditioned air connector
- · Pack conditioned air
- · Distribution manifolds and ducts.

EFFECTIVITY


21-21-00

SIA ALL

737-7/8/8200/9/10 SYSTEM DESCRIPTION SECTION

AIR CONDITIONING - MAIN AIR DISTRIBUTION - INTRODUCTION

DISTRIBUTION COMPARTMENT

2368360 S00061517233_V1

AIR CONDITIONING - MAIN AIR DISTRIBUTION - INTRODUCTION

SIA ALL

21-21-00

Page 3 Sep 15/2021

AIR CONDITIONING - MAIN AIR DISTRIBUTION - GROUND CONDITIONED AIR CONNECTOR

Purpose

The ground conditioned air connector lets an external source of conditioned air supply the airplane air conditioning system.

Location

The ground conditioned air connector is in the main distribution compartment (aft of the forward cargo compartment). There is an external access panel forward of the air conditioning compartments.

Physical Description

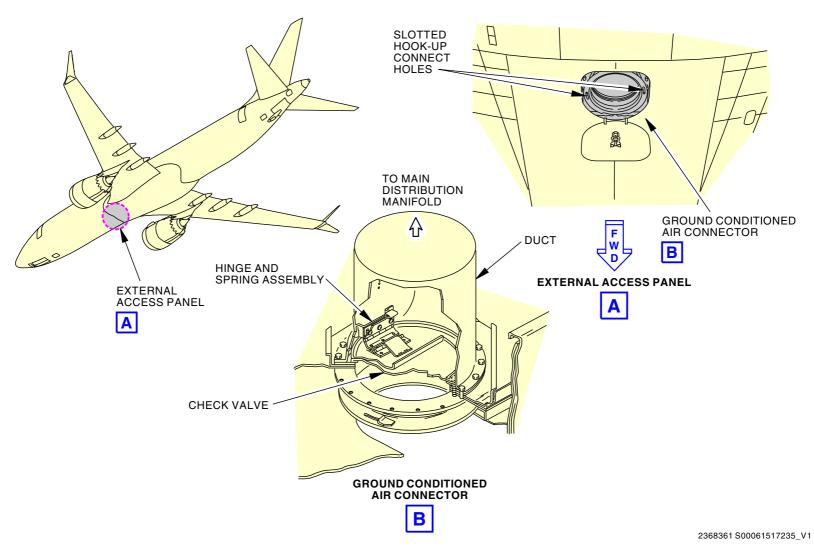
The ground conditioned air connector is a short duct section with a check valve. There are two slotted connect holes on the outside fitting for the ground cart hose hook-up. The ground air connection uses a standard 8 inch bayonet connector.

The ground conditioned air connector attaches to the main distribution manifold duct with band clamps. The connector fitting attaches to the skin of the airplane with a pressure seal.

Check Valve

The check valve is inside the ground conditioned air connector. It prevents the loss of air through the connector when the air conditioning system is on. When you attach the ground cart hose, the check valve moves out of the air flow path. The ground conditioned air can flow into the distribution system.

A hinge on the duct and the check valve assembly has a spring. The spring holds the check valve open when the air conditioning system is off. When the air conditioning system is on, the pressure in the manifold causes the check valve to close.


EFFECTIVITY

21-21-00

SIA ALL

AIR CONDITIONING - MAIN AIR DISTRIBUTION - GROUND CONDITIONED AIR CONNECTOR

AIR CONDITIONING - MAIN AIR DISTRIBUTION - GROUND CONDITIONED AIR CONNECTOR

21-21-00

SIA ALL

EFFECTIVITY

THIS PAGE IS INTENTIONALLY LEFT BLANK

21-22-00

AIR CONDITIONING - FLIGHT COMPARTMENT CONDITIONED AIR DISTRIBUTION - INTRODUCTION

Purpose

The flight compartment conditioned air distribution system supplies the flight crew with conditioned air.

General

The left air conditioning pack supplies the conditioned air for the flight compartment. The air flows through ducts that go forward along the left side of the airplane. The flight compartment distribution uses different ducts than the passenger compartment distribution.

The flight compartment receives conditioned air from the right pack if the left pack is not operational.

The flight compartment distribution lets the flight crew select a different air temperature than the other areas of the airplane.

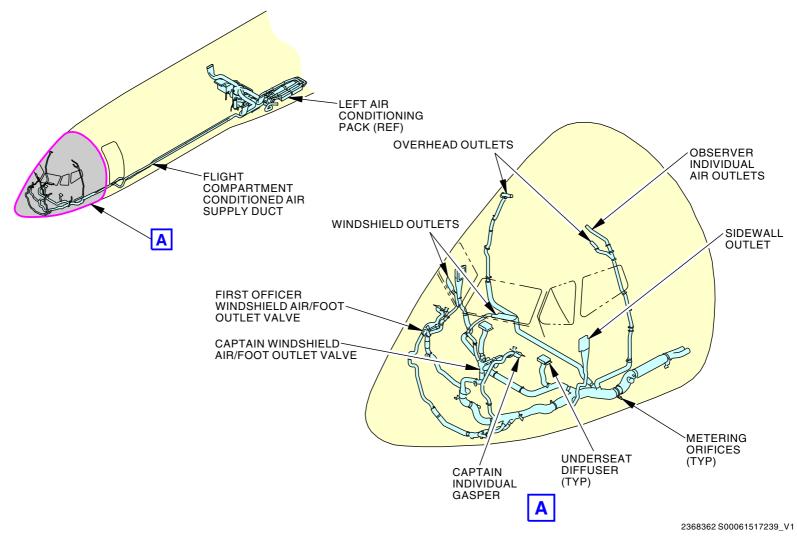
Flight Compartment Distribution

The flight compartment has these captain and first officer diffusers and outlets:

- · Overhead outlets and gasper
- · Underseat diffusers
- · Foot air diffusers
- · Windshield air diffusers
- Sidewall outlets (shoulder warmers)
- · Individual panel gaspers.

You can adjust the overhead outlets airflow direction with a moveable baffle. Airflow cannot be shut off.

The air distribution supply ducts in the flight compartment include metering orifices and mufflers. The metering orifices control flow. The mufflers decrease air noise.


EFFECTIVITY

21-22-00

SIA ALL

AIR CONDITIONING - FLIGHT COMPARTMENT CONDITIONED AIR DISTRIBUTION - INTRODUCTION

AIR CONDITIONING - FLIGHT COMPARTMENT CONDITIONED AIR DISTRIBUTION - INTRODUCTION

SIA ALL

21-22-00

AIR CONDITIONING - FLIGHT COMPT COND AIR DISTRIBUTION - WINDSHIELD AND FOOT AIR OUTLET VALVE

Purpose

The windshield and foot air outlet valves control airflow to the captain and first officer windshield outlets and foot outlets.

Location

The windshield outlets are forward of the captain and first officer glareshield. They supply airflow up and along the windshield pane. The windshield and foot air outlet valves are forward of the rudder pedals. The foot air outlets are inside the captain and first officer rudder pedal housings.

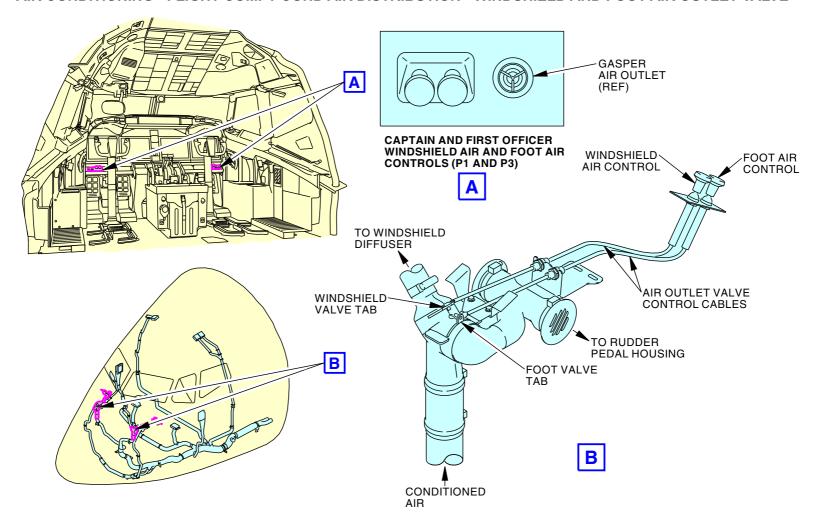
Physical Description

There are two segmented disks inside the windshield and foot air outlet valve housing. The disk position controls airflow from the valve. The segmented disk connects to the air outlet valve control cable to change the disk position.

Operation

The captain and first officer windshield and foot air outlet valves have manual control. The controls are on the lower portion of the P1 and P3 panels. The controls are WINDSHIELD AIR and FOOT AIR. They attach to push-pull control cables. The control cables turn the segmented disks inside the valves. You pull the knob to open the valve.

Adjustment nuts on the control cables adjust the windshield air valve or foot air outlet valve.


EFFECTIVITY

21-22-00

SIA ALL

AIR CONDITIONING - FLIGHT COMPT COND AIR DISTRIBUTION - WINDSHIELD AND FOOT AIR OUTLET VALVE

2368363 S00061517241_V1

AIR CONDITIONING - FLIGHT COMPT COND AIR DISTRIBUTION - WINDSHIELD AND FOOT AIR OUTLET VALVE

SIA ALL

EFFECTIVITY

21-22-00

THIS PAGE IS INTENTIONALLY LEFT BLANK

21-23-00

AIR CONDITIONING - PASSENGER CABIN CONDITIONED AIR DISTRIBUTION - INTRODUCTION

Purpose

The passenger cabin conditioned air distribution system divides the flow of conditioned air to the passenger cabin.

General

The passenger cabin conditioned air distribution system uses these components:

- · Sidewall riser ducts
- Overhead distribution ducts
- Plenum/nozzle assemblies
- · Sidewall diffuser outlets
- · Diffuser/hose assembly.

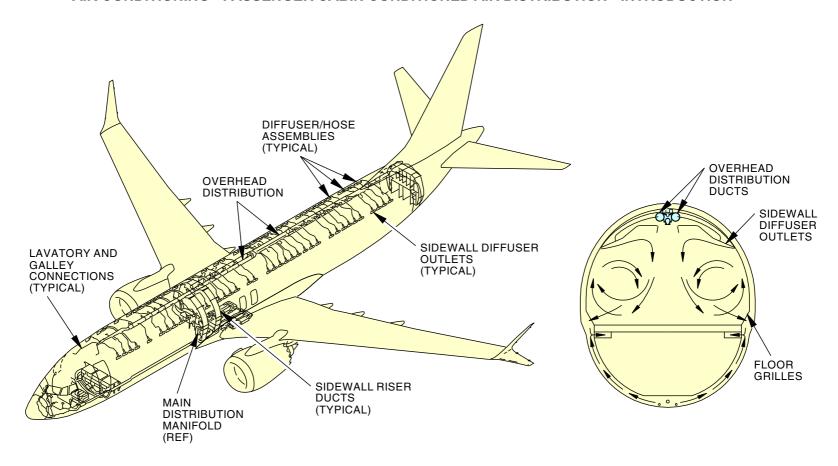
Conditioned air from the main distribution manifold flows through sidewall riser ducts. The riser ducts follow the airplane contour along the right and left fuselage. The left side has two riser sections, the right side has one. The riser ducts supply the overhead distribution ducts.

The overhead distribution ducts are along the top center of the passenger cabin.

Conditioned air from the overhead distribution ducts flows to the sidewall diffusers.

The overhead distribution duct connects to flexible hoses to supply the galleys and the lavatories in the front and aft cabin areas.

The passenger cabin exhaust air goes through floor grilles to the recirculation system or overboard.


EFFECTIVITY

21-23-00

SIA ALL

AIR CONDITIONING - PASSENGER CABIN CONDITIONED AIR DISTRIBUTION - INTRODUCTION

2822617 S0000653054_V2

AIR CONDITIONING - PASSENGER CABIN CONDITIONED AIR DISTRIBUTION - INTRODUCTION

SIA ALL

21-23-00

Page 3 Sep 15/2021

AIR CONDITIONING - PASSENGER CABIN CONDITIONED AIR DISTRIBUTION - OVERHEAD DISTRIBUTION DUCT

Purpose

The overhead distribution duct divides the supply of conditioned air to outlets along the center and sidewalls of the passenger cabin for a symmetrical balance of airflow.

Location

The overhead distribution duct is in the center ceiling area of the passenger compartment.

Physical Description

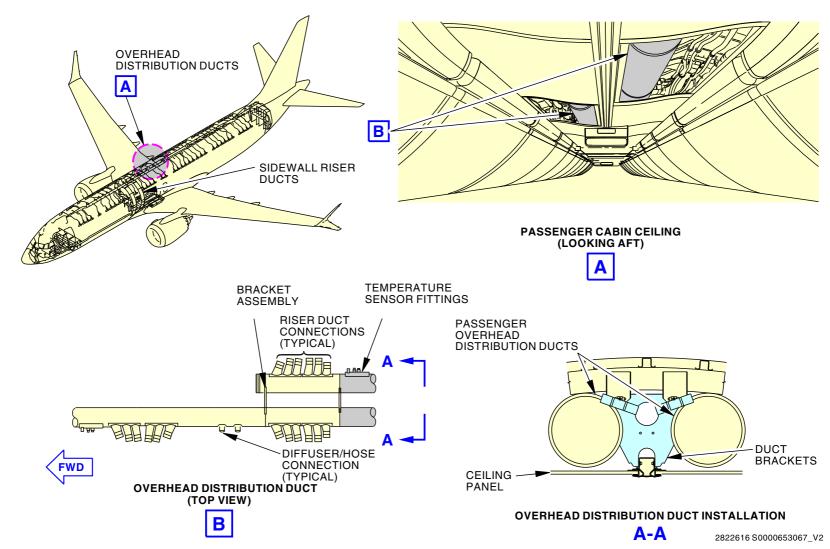
The overhead distribution duct is a cylindrical composite tube. There are outlets along its length that attach to riser ducts and flexible sidewall ducts. The fittings in the area where the sidewall riser ducts attach permit the attachment of temperature sensors.

The overhead distribution duct spuds are longer and incorporate a vent hole to provide an additional air flow and drying effect through the crown vent system.

The sidewall riser ducts attach on the left and right sides of the overhead distribution manifold.

You get access to the overhead distribution duct through the ceiling panels in the passenger cabin. Screws attach the diffuser outlet assembly to the overhead distribution duct. Duct brackets attach the overhead distribution duct to the ceiling supports. Diffuser/hose connections on the overhead distribution duct connect to the sidewall diffusers.

EFFECTIVITY


21-23-00

SIA ALL

AIR CONDITIONING - PASSENGER CABIN CONDITIONED AIR DISTRIBUTION - OVERHEAD DISTRIBUTION DUCT

AIR CONDITIONING - PASSENGER CABIN CONDITIONED AIR DISTRIBUTION - OVERHEAD DISTRIBUTION DUCT

SIA ALL

21-23-00

Page 5 Sep 15/2021

THIS PAGE IS INTENTIONALLY LEFT BLANK

21-25-00

AIR CONDITIONING - RECIRCULATION SYSTEM - INTRODUCTION

Purpose

The recirculation system supplies air for ventilation. The use of cabin air for ventilation decreases the use of air from the engine bleed system.

General Description

The recirculation system collects cabin air to use with pack air in the distribution system. The distribution system supplies air to the passenger compartment area.

The passenger cabin air moves through these recirculation components:

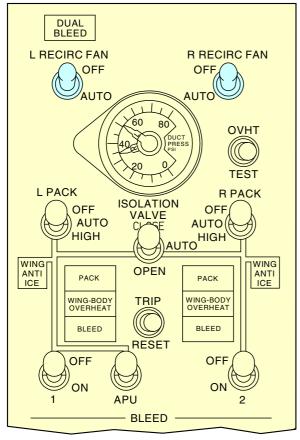
- Collector shroud
- Air filters
- Fans
- · Check valves.

Location

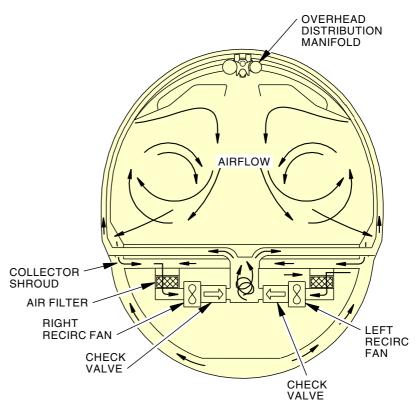
The recirculation components are in the distribution compartment.

Operation

The recirculation fans are enabled when you move the RECIRC FAN switches to the AUTO position. Recirculation fan operation depends on air conditioning pack operation.


EFFECTIVITY

21-25-00


SIA ALL

AIR CONDITIONING - RECIRCULATION SYSTEM - INTRODUCTION

RECIRCULATION SCHEMATIC

2823203 S0000653346_V3

AIR CONDITIONING - RECIRCULATION SYSTEM - INTRODUCTION

SIA ALL

21-25-00

AIR CONDITIONING - RECIRCULATION SYSTEM - RECIRCULATION AIR FILTER

Purpose

The recirculation air filters remove small particles of material from the air that flows back to the passenger cabin.

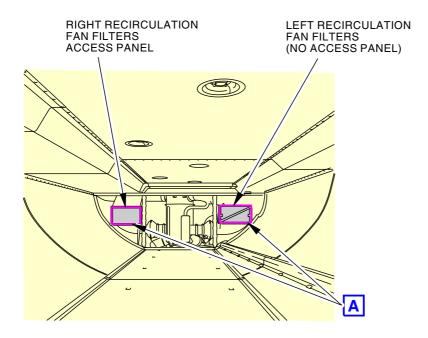
General

The recirculation fan pulls air from the passenger compartment through a High Efficiency Particulate Air (HEPA) filter to remove very small particles at the bacteria and microorganism level.

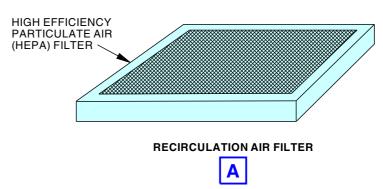
HEPA filters are made of a fine mesh that is highly effective at removing particulates such as viruses, bacteria and fungi from recirculated air.

Location

The recirculation components are in the distribution bay. The filter is in the filter support. Access to the filter is through the partition at the aft end of the forward cargo compartment.


EFFECTIVITY

SIA ALL



AIR CONDITIONING - RECIRCULATION SYSTEM - RECIRCULATION AIR FILTER

DISTRIBUTION COMPARTMENT (FORWARD CARGO COMPARTMENT) (VIEW IN THE AFT DIRECTION)

2368367 S00061517253 V1

AIR CONDITIONING - RECIRCULATION SYSTEM - RECIRCULATION AIR FILTER

21-25-00

21-25-00-002

SIA ALL

AIR CONDITIONING - RECIRCULATION SYSTEM - RECIRCULATION FAN

Purpose

The recirculation fans increase air flow to the passenger cabin in the main distribution system.

Location

There are two recirculation fans (left and right) in the distribution compartment. Access to the fans is through the partition in the forward cargo compartment.

Physical Description

Each fan has these features:

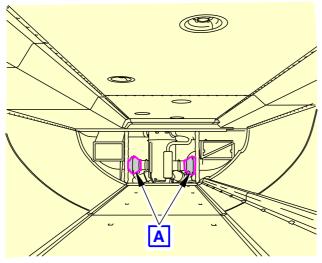
- Housing
- Mounting flanges
- · Electrical connector
- · Flow direction placard.

Functional Description

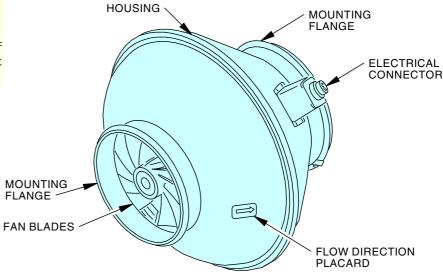
The recirculation fans pull air in from the passenger cabin and supply it into the main distribution manifold.

The right recirculation fan pulls in air from the collector shroud in the forward cargo compartment. Floor grilles in the passenger compartment permit airflow into the collector shroud.

The left recirculation fan pulls in air from the distribution compartment.


EFFECTIVITY

21-25-00


SIA ALL

AIR CONDITIONING - RECIRCULATION SYSTEM - RECIRCULATION FAN

FWD CARGO COMPARTMENT (AFT BULKHEADS ARE REMOVED) (VIEW IN THE AFT DIRECTION)

RECIRCULATION FAN (TYPICAL)

2368368 S00061517255_V1

AIR CONDITIONING - RECIRCULATION SYSTEM - RECIRCULATION FAN

SIA ALL

21-25-00

AIR CONDITIONING - RECIRCULATION SYSTEM - FAN CHECK VALVE

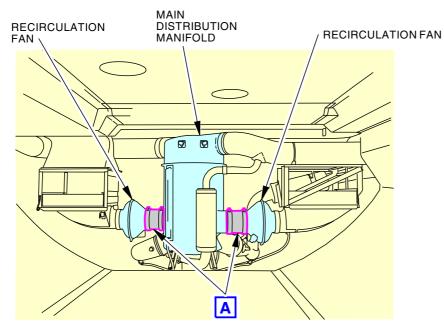
Purpose

The recirculation fan check valves prevent the flow of conditioned air out of the main distribution manifold through the recirculation system.

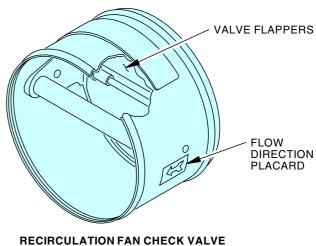
Location

The recirculation fan check valves are in the distribution compartment. The check valves are between the recirculation fan and the main distribution manifold. Access to the check valves is through the partition at the aft end of the forward cargo compartment.

EFFECTIVITY


21-25-00

SIA ALL



AIR CONDITIONING - RECIRCULATION SYSTEM - FAN CHECK VALVE

DISTRIBUTION COMPARTMENT (FORWARD CARGO COMPARTMENT) (VIEW IN THE AFT DIRECTION)

2368369 S00061517257_V1

AIR CONDITIONING - RECIRCULATION SYSTEM - FAN CHECK VALVE

EFFECTIVITY

21-25-00

SIA ALL

AIR CONDITIONING - RECIRCULATION SYSTEM - RIGHT RECIRCULATION FAN - FUNCTIONAL DESCRIPTION

Functional Description

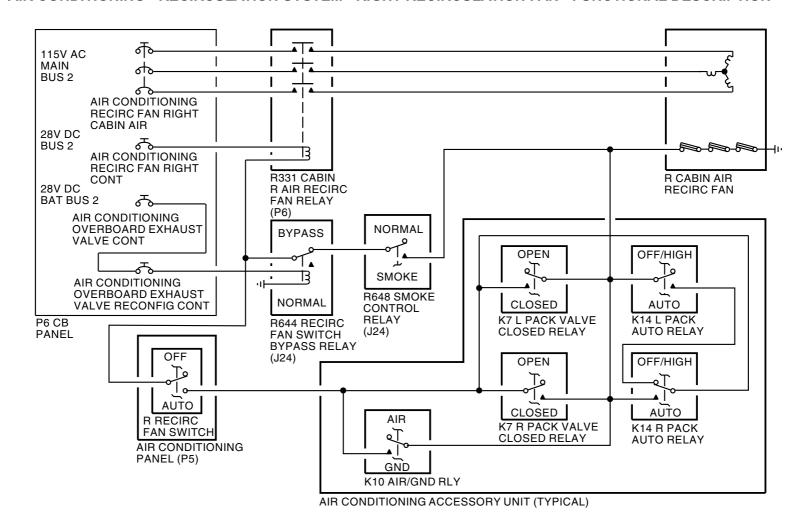
The recirculation fan operates on 115v ac and control power is 28v dc.

The cabin air recirc fan relay R331 enables power to the fan. The relay is controlled by:

- · Airplane is on the ground
- · RECIRC FAN switch
- Recirculation fan overheat switches in the fan field coils
- Flow control valve (pack valve) closed and auto relays.

Usually, the RECIRC FAN switch is in the AUTO position and the fan overheat switches are closed.

The flow control valve closed and auto relays and air/ground relay form a logic circuit for the fan relay R331 and are in the air conditioning accessory units (ACAU). This logic looks at pack flow conditions. If one (L or R) of the pack valve closed relays is energized, the recirculation fan operates to increase cabin ventilation. If one (L or R) of the pack valves have their auto relays energized, the recirculation fan operates.


EFFECTIVITY

21-25-00

SIA ALL

AIR CONDITIONING - RECIRCULATION SYSTEM - RIGHT RECIRCULATION FAN - FUNCTIONAL DESCRIPTION

2368370 S00061517259_V1

Sep 15/2021

AIR CONDITIONING - RECIRCULATION SYSTEM - RIGHT RECIRCULATION FAN - FUNCTIONAL DESCRIPTION

SIA ALL

D633AM102-SIA

ECCN 9E991 BOEING PROPRIETARY - See title page for details

AIR CONDITIONING - RECIRCULATION SYSTEM - LEFT RECIRCULATION FAN - FUNCTIONAL DESCRIPTION

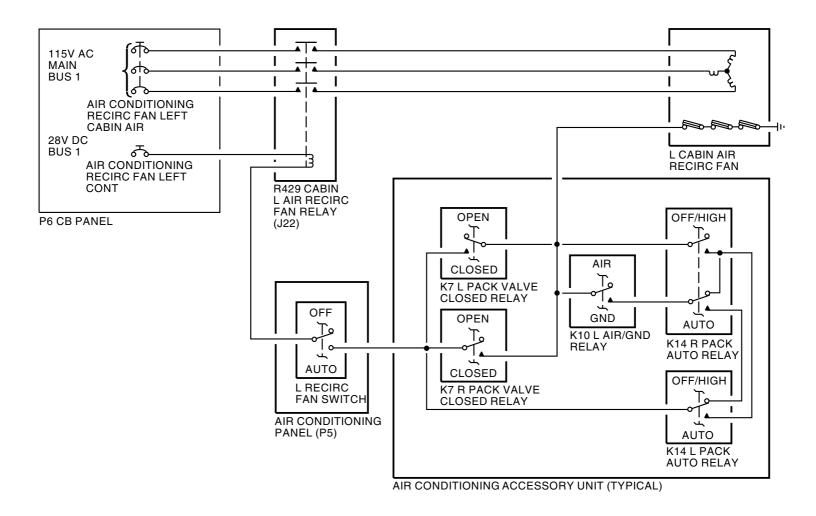
Functional Description

The recirculation fan operates on 115v ac and control power is 28v dc.

The cabin air recirc fan relay R429 enables power to the fan. The relay is controlled by these functions:

- · Airplane is on the ground
- · RECIRC FAN switch
- Recirculation fan overheat switches in the fan field coils
- Flow control valve (pack valve) closed and auto relays.

Normally the RECIRC FAN switch is in the AUTO position and the fan overheat switches are closed.


The flow control valve closed and auto relays and air/ground relay form a logic circuit for the R429 fan relay and are in the air conditioning accessory units (ACAU). This logic looks at pack flow conditions. If one (L or R) of the pack valve closed relays is energized, the recirculation fan operates to increase cabin ventilation. If one (L or R) of the pack valves have their auto relays energized, the recirculation fan operates.

SIA ALL

21-25-00

AIR CONDITIONING - RECIRCULATION SYSTEM - LEFT RECIRCULATION FAN - FUNCTIONAL DESCRIPTION

2368371 S00061517261_V1

AIR CONDITIONING - RECIRCULATION SYSTEM - LEFT RECIRCULATION FAN - FUNCTIONAL DESCRIPTION

SIA ALL

EFFECTIVITY

D633AM102-SIA

21-25-00

THIS PAGE IS INTENTIONALLY LEFT BLANK

21-26-00

AIR CONDITIONING - VENTILATION SYSTEM - GALLEY VENTILATION MUFFLER

Purpose

The galley ventilation muffler decreases noise levels of the air that flows out of the galleys.

General

The ventilation system uses differential pressure, cabin-to-ambient, to remove air by suction. The system uses these components to take air out of the galley:

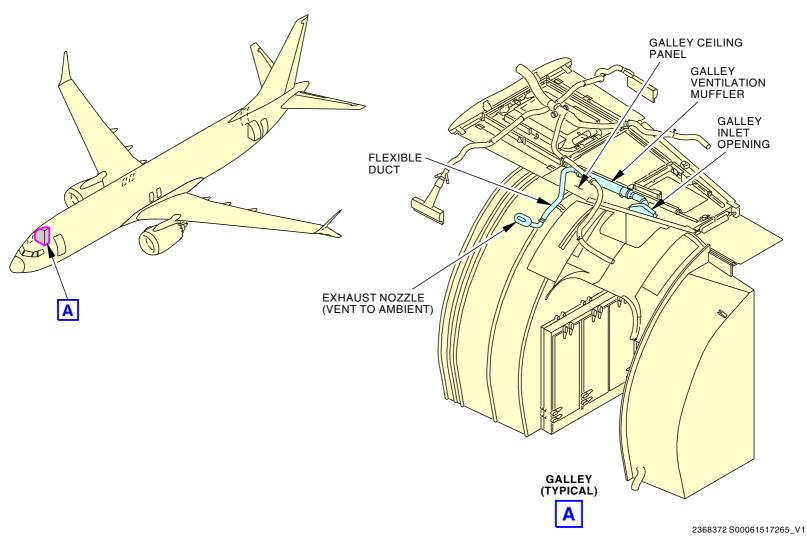
- Galley vent inlet
- Flexible ducts
- · Galley ventilation muffler
- Exhaust nozzle.

The flexible ducts connect the vent inlet opening in the galley ceiling to an exhaust nozzle in the airplane skin. The galley ventilation muffler reduces the noise of air being released from the pressurized cabin.

Location

The galley ventilation muffler is in the ceiling area above the galley.

EFFECTIVITY


21-26-00

SIA ALL

Page 2

AIR CONDITIONING - VENTILATION SYSTEM - GALLEY VENTILATION MUFFLER

AIR CONDITIONING - VENTILATION SYSTEM - GALLEY VENTILATION MUFFLER

EFFECTIVITY SIA ALL

21-26-00

Page 3 Sep 15/2021

THIS PAGE IS INTENTIONALLY LEFT BLANK

AIR CONDITIONING - EQUIPMENT COOLING SYSTEM - INTRODUCTION

Purpose

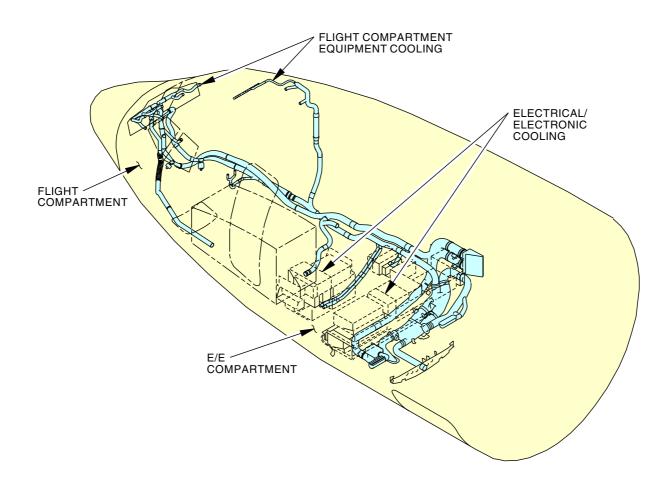
The equipment cooling system removes heat from electronic components in the flight compartment and the E/E compartment.

General

The system uses cabin air to remove heat from equipment. Fans move the air through ducts and manifolds.

Abbreviations and Acronyms

- · ADIRU air data inertial reference unit
- cgo cargo
- clg cooling
- E/E electrical and electronic
- F/C flight compartment
- flt flight
- FMC flight management computer
- fwd forward
- gnd ground
- ht heat
- MDS max display system
- OEV overboard exhaust valve
- pnl panel


EFFECTIVITY

21-27-00

SIA ALL

AIR CONDITIONING - EQUIPMENT COOLING SYSTEM - INTRODUCTION

2368373 S00061517269_V1

AIR CONDITIONING - EQUIPMENT COOLING SYSTEM - INTRODUCTION

SIA ALL

21-27-00

Page 3 Sep 15/2021

737-7/8/8200/9/10 SYSTEM DESCRIPTION SECTION

AIR CONDITIONING - EQUIPMENT COOLING SYSTEM - GENERAL DESCRIPTION

General

The equipment cooling system uses these systems to remove heat from equipment:

- · Supply system (pushes air)
- · Exhaust system (pulls air).

The supply system and the exhaust system use fans to move air. Each system has a primary fan and an alternate fan.

The supply and exhaust fans move air through ducts and manifolds. The ducts and manifolds connect to shrouds around the electronic and electrical equipment. Low flow sensors monitor the ducts for cooling flow conditions.

Supply

The supply fans push air to these components:

- P1 and P2 (display units)
- P9 panel (FMC control display units)
- P8 (center aisle stand)
- Equipment racks in the EE compartment.

Exhaust

The exhaust fans pull air from these components:

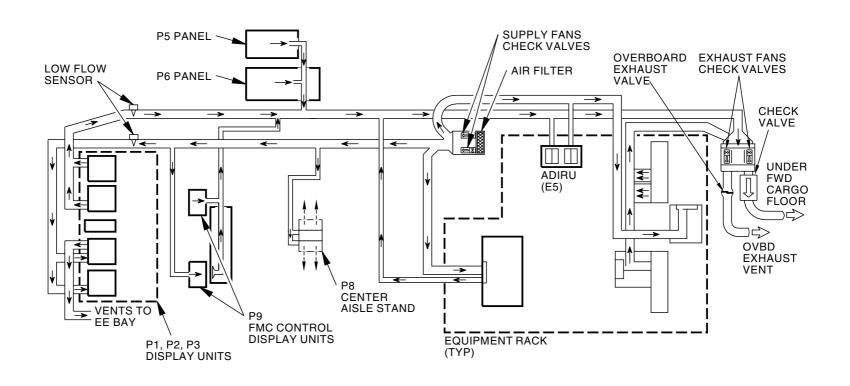
- P2 and P3 (display units)
- P9 (FMC control display units)
- P6 (circuit breaker panel)
- P5 (control and indication)

EFFECTIVITY

• Equipment racks in the EE compartment.

The overboard exhaust valve lets exhaust air go overboard when the airplane is on the ground. The exhaust air adds to the heat in the forward cargo compartment in flight. The check valve isolates the exhaust air from the cargo compartment when the airplane is in the air and the overboard exhaust valve is open.

Low Flow Sensors


The supply and the exhaust systems use low flow sensors to monitor the cooling quality of air through the system. When a low flow or not sufficient cooling condition occurs, the low flow sensor supplies an alarm signal to the flight compartment for annunciation.

21-27-00

21-27-00-002

AIR CONDITIONING - EQUIPMENT COOLING SYSTEM - GENERAL DESCRIPTION

FLIGHT COMPARTMENT

EE COMPARTMENT

2368374 S00061517271 V1

AIR CONDITIONING - EQUIPMENT COOLING SYSTEM - GENERAL DESCRIPTION

SIA ALL

21-27-00

Page 5 Sep 15/2021

AIR CONDITIONING - EQUIPMENT COOLING SYSTEM - COMPONENT LOCATION

General

The equipment cooling system has these parts:

- Supply
- Exhaust.

Supply

The supply duct extends forward along the right sidewall. It divides to supply the equipment racks in the EE compartment and the panels in the flight compartment.

The right sidewall section of the EE compartment contains these components:

- · Normal and alternate supply fans
- · Check valves
- Air Filter.

Exhaust

The aft lower section of the EE compartment contains these components:

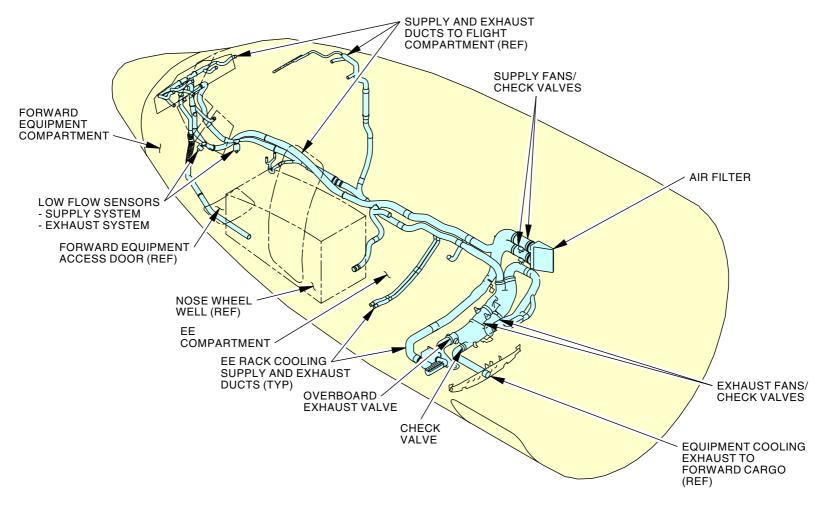
- Normal and alternate exhaust fans
- · Check valves
- Overboard exhaust valve.

The overboard exhaust valve is under the floor at the center aft area of the EE compartment.

The overboard exhaust valve is under the floor structure at the center aft area of the EE compartment.

Low Flow Sensors

The supply and exhaust low flow sensors are in the forward equipment compartment. They are forward of the nose wheel well. You get access through the forward equipment compartment access door.


SIA ALL

21-27-00

Page 6

AIR CONDITIONING - EQUIPMENT COOLING SYSTEM - COMPONENT LOCATION

2368375 S00061517273_V1

AIR CONDITIONING - EQUIPMENT COOLING SYSTEM - COMPONENT LOCATION

SIA ALL EFFECTIVITY 21-27-00

Page 7 Sep 15/2021

AIR CONDITIONING - EQUIPMENT COOLING SYSTEM - OPERATION

General

The controls and indications for the equipment cooling system are on the equipment cooling panel on the P5 forward overhead panel.

Operation

The equipment cooling panel has an equipment cooling SUPPLY switch and an equipment cooling EXHAUST switch. Each switch has these two positions:

- NORM
- ALTN.

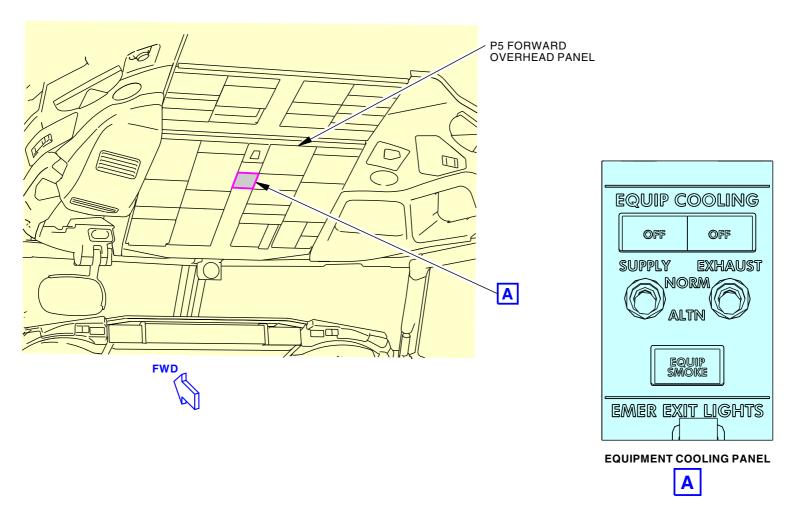
You put the switch in one of these positions to operate the normal or the alternate fan.

Indication

The equipment cooling system has low flow detectors to give a warning when there is not sufficient cooling airflow. On the ground, the crew call horn sounds when low flow is detected in the supply system. This gives you warning and that you should shut down airplane electrical systems to prevent an overheat condition.

These are the warning indications:

- Amber OFF lights on the P5 panel
- MASTER CAUTION and OVERHEAD annunciator lights.


EFFECTIVITY

21-27-00

SIA ALL

AIR CONDITIONING - EQUIPMENT COOLING SYSTEM - OPERATION

2368376 S00061517275_V1

AIR CONDITIONING - EQUIPMENT COOLING SYSTEM - OPERATION

SIA ALL

21-27-00

Page 9 Sep 15/2021

21-27-00

AIR CONDITIONING - EQUIPMENT COOLING SYSTEM - AIR FILTER

Purpose

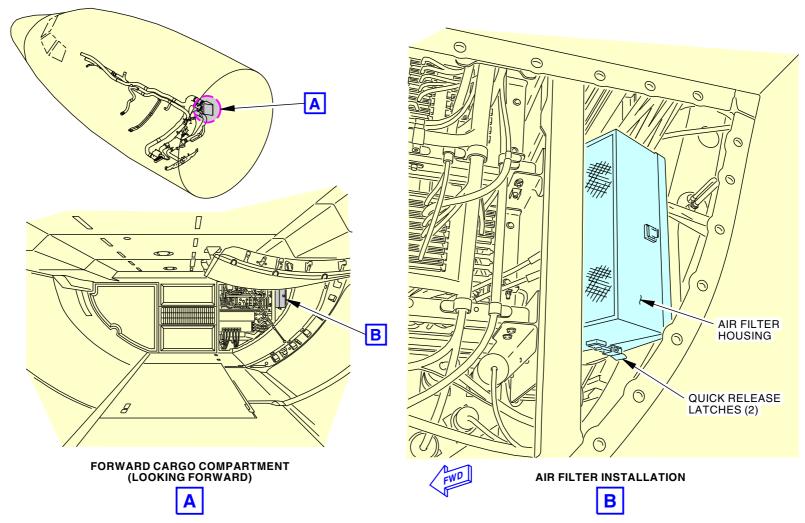
The equipment cooling air filter removes small particles of dirt from the air before it enters the EE cooling system. This prevents contamination of the electrical and the electronic equipment.

Location

The equipment cooling air filter is in the EE compartment, on the right sidewall. It is upstream of the supply fans. Access to the air filter is from the forward cargo compartment right forward access panel.

Physical Description

The air filter is a cartridge type filter inside the air filter housing.


EFFECTIVITY

SIA ALL

737-7/8/8200/9/10 SYSTEM DESCRIPTION SECTION

AIR CONDITIONING - EQUIPMENT COOLING SYSTEM - AIR FILTER

2368377 S00061517277_V1

AIR CONDITIONING - EQUIPMENT COOLING SYSTEM - AIR FILTER

SIA ALL

AIR CONDITIONING - EQUIPMENT COOLING SYSTEM - SUPPLY AND EXHAUST FANS

Purpose

The supply and exhaust fans move air around electrical equipment to remove heat.

General Description

There are two sets of fans (normal and alternate) for the supply and the exhaust systems. One fan per system operates at a time.

Location

The supply fans and check valves are in the EE compartment. You get access to the supply fans through the EE compartment.

The exhaust fans and check valves are in the aft lower section of the EE compartment. You get access to the exhaust fans through the raised access panel aft of the equipment access door.

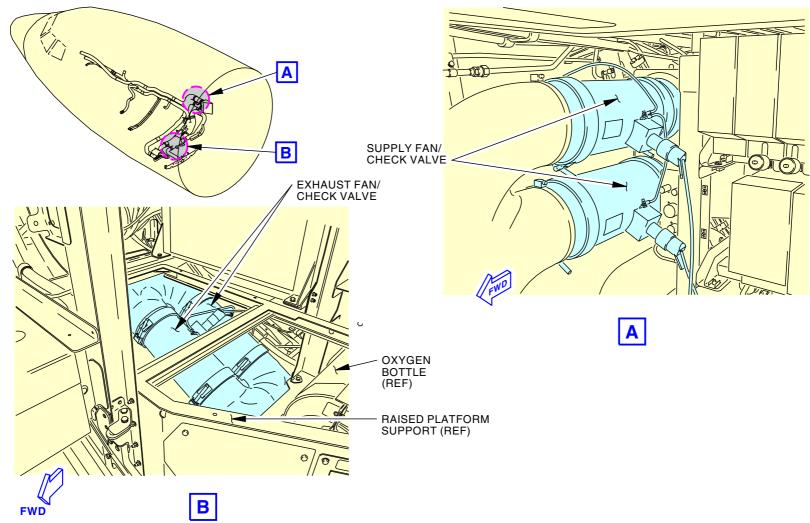
Physical Description

The fans are single-stage fans with an integral induction motor. They each have a check valve and install as a unit. The fans have thermal switches that protect the fans from overheat damage.

Aft Equipment Cooling Exhaust Fan

The cooling exhaust fan is on the enhanced E6 electronics rack in the aft cargo compartment. The cooling exhaust fan will provide active cooling to the enhanced E6 shelves.

EFFECTIVITY


21-27-00

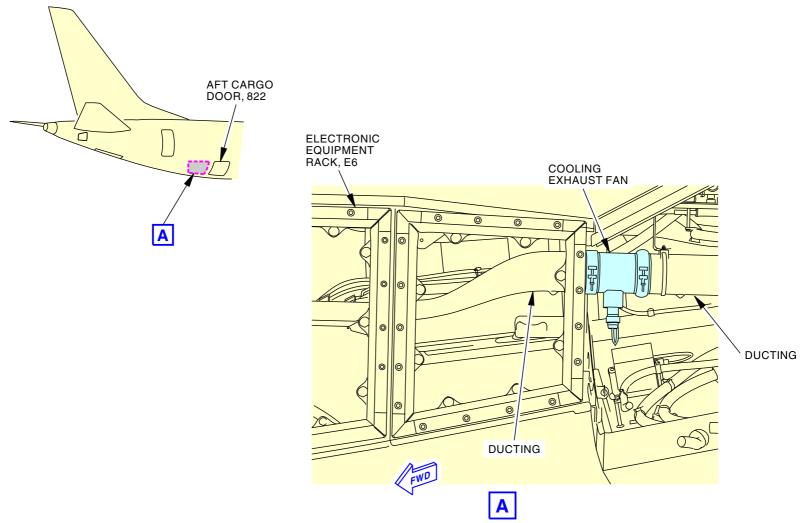
SIA ALL

Page 12

AIR CONDITIONING - EQUIPMENT COOLING SYSTEM - SUPPLY AND EXHAUST FANS

AIR CONDITIONING - EQUIPMENT COOLING SYSTEM - SUPPLY AND EXHAUST FANS

2368378 S00061517279_V1


21-27-00-006

SIA ALL

EFFECTIVITY

AIR CONDITIONING - EQUIPMENT COOLING SYSTEM - SUPPLY AND EXHAUST FANS

AIR CONDITIONING - EQUIPMENT COOLING SYSTEM - EXHAUST FAN

2574952 S0000618932_V2

SIA ALL

21-27-00

Page 14 Sep 15/2021

THIS PAGE IS INTENTIONALLY LEFT BLANK

AIR CONDITIONING - EQUIPMENT COOLING SYSTEM - LOW FLOW DETECTOR

Purpose

The low flow sensors monitor air flow for the equipment cooling system. When airflow cooling quality through the equipment is not sufficient, the sensor supplies an indication.

Location

The low flow sensors are in the forward equipment compartment. They are in the supply and exhaust ducts of the equipment cooling system. Access to the sensors is through the forward equipment compartment access door.

Functional Description

The low flow sensors are a hot wire anemometer type. The low flow sensor monitors the airflow and temperature of the equipment cooling air. The sensor sends an alarm signal when the equipment cooling airflow is not within limits.

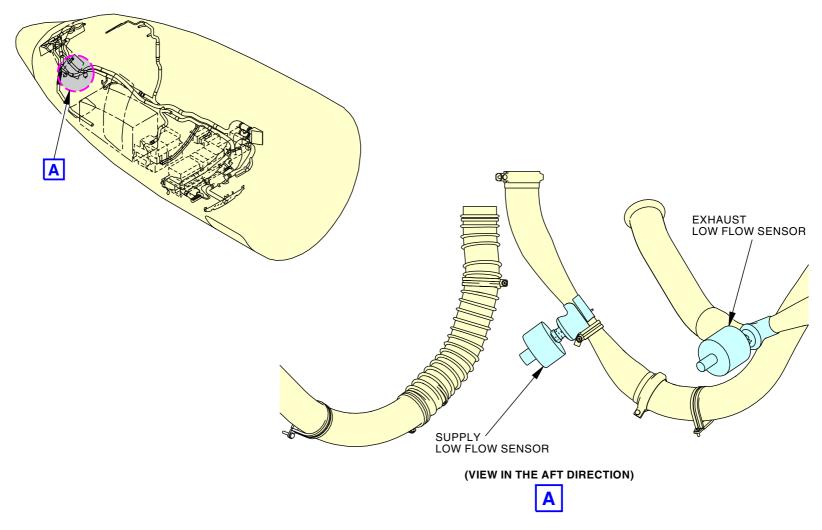
The low flow sensors have an internal BIT. At power-up, the low flow sensors and alarm circuits do a test for correct operation. If the sensor(s) fail the BIT test, the alarm circuit causes the MASTER CAUTION light and the related EQUIP COOLING OFF light to come on.

Interfaces

SIA ALL

The low flow sensors supply an alarm signal to these components for indication:

- Flight recorder/mach airspeed module
- · The equipment cooling panel
- The ADIRS (crew call).


EFFECTIVITY

21-27-00

Page 16

AIR CONDITIONING - EQUIPMENT COOLING SYSTEM - LOW FLOW DETECTOR

2368379 S00061517281_V1

AIR CONDITIONING - EQUIPMENT COOLING SYSTEM - LOW FLOW DETECTOR

SIA ALL

21-27-00

Page 17 Sep 15/2021

737-7/8/8200/9/10 SYSTEM DESCRIPTION SECTION

AIR CONDITIONING - EQUIPMENT COOLING SYSTEM - SUPPLY FAN - FUNCTIONAL DESCRIPTION

General

The supply fan supplies cooling air to the equipment in the EE compartment and flight compartment.

There are two supply fans: normal, and alternate.

One supply fan is set to operate when you apply system power.

Normal Supply Fan Operation

The normal supply fan operates when these conditions are present:

- Thermal switches in the normal supply fan are closed (no overheat condition)
- Supply system control interrupt relay R645 is in the normal (de-energized) position
- Supply equipment cooling switch is in the NORMAL position.

The normal supply fan control relay R347 energizes to supply 115v AC 3-phase power to the fan.

Alternate Supply Fan Operation

EFFECTIVITY

The alternate supply fan operates when the supply equipment cooling switch is in the ALTERNATE position and the same logic conditions as the normal fan.

Fan Failure/Low Flow

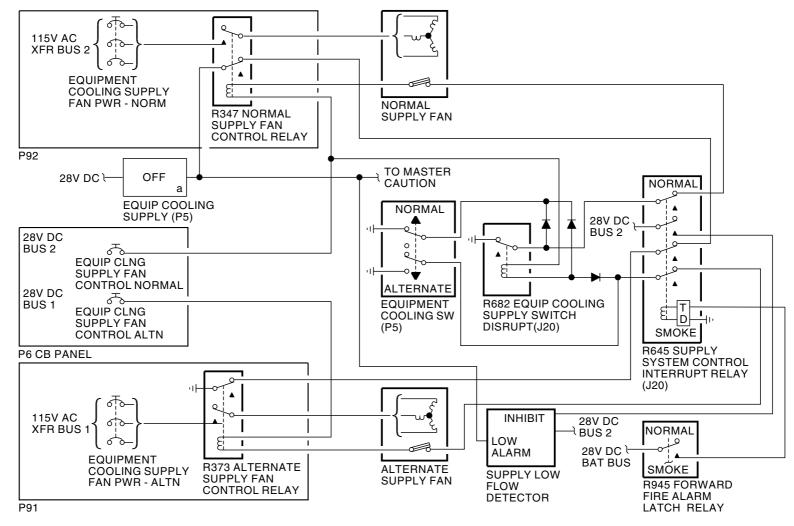
If a fan does not operate, the supply low flow detector low alarm signal operates. The system OFF light and MASTER CAUTION lights come on.

Smoke/Interrupt

When the flight crew gets the forward cargo smoke alarm and takes the appropriate action, smoke control relay R945 will be energized and will allow 28v dc through contacts of an energized forward fire alarm latch relay R645.

The energized supply system control interrupt relay R645 removes power to the normal and alternate supply fans.

The supply low flow detector receives an inhibit signal. This prevents the low flow signal from causing the EQUIP COOLING SUPPLY OFF and MASTER CAUTION lights to come on.


Power to the E/E cooling supply system normal and alternate fans is removed for the duration of the flight to prevent smoke from entering the occupied compartments. In addition, the E/E cooling supply low flow sensor warning is inhibited for the remainder of the flight.

21-27-00

Page 18

AIR CONDITIONING - EQUIPMENT COOLING SYSTEM - SUPPLY FAN - FUNCTIONAL DESCRIPTION

2368380 S00061517283_V1

AIR CONDITIONING - EQUIPMENT COOLING SYSTEM - SUPPLY FAN - FUNCTIONAL DESCRIPTION

SIA ALL

D633AM102-SIA

21-27-00

Page 19 Sep 15/2021

21-27-00

AIR CONDITIONING - EQUIPMENT COOLING SYSTEM - EXHAUST FAN - FUNCTIONAL DESCRIPTION

General

The exhaust fans pull air from equipment in the EE compartment and flight compartment.

There are two exhaust fans, normal and alternate.

One exhaust fan is set to operate when you apply system power.

Normal Exhaust Fan Operation

The normal exhaust fan operates when these conditions are present:

- Thermal switches in the normal exhaust fan are closed (no overheat condition)
- Exhaust equipment cooling switch is in the NORMAL position.

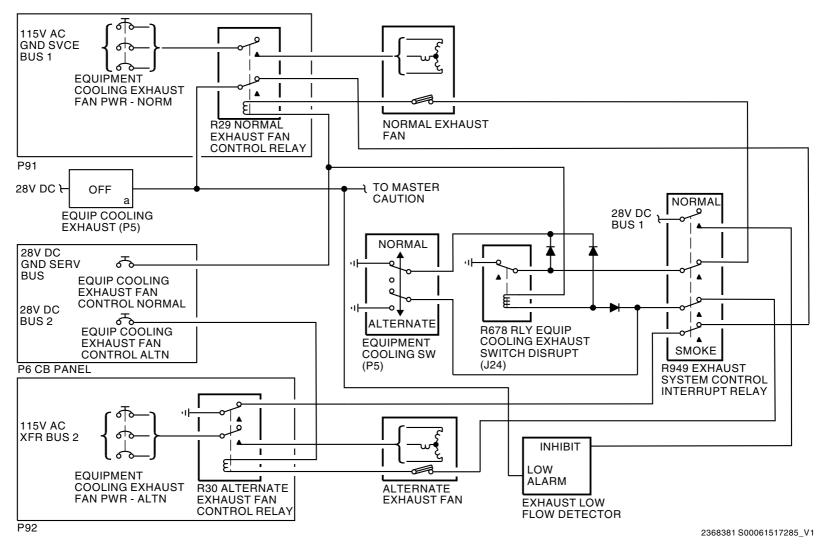
If the EQUIP COOLING EXHAUST switch is in the NORM position but the ground is not present at the switch, the de-energized equipment cooling exhaust switch disrupt relay R678 will provide a ground for the control circuit and energize the normal exhaust fan control relay R29 to allow power to the normal exhaust fan M98.

The normal exhaust fan control relay R29 energizes to supply 115v ac 3-phase power to the fan.

Alternate Exhaust Fan Operation

The alternate exhaust fan operates when the exhaust equipment cooling switch is in the ALTERNATE position and the same logic conditions as the normal fan.

Fan Failure/Low Flow


If a fan does not operate, the exhaust low flow detector low alarm signal operates. The system OFF light and the MASTER CAUTION lights come on.

EFFECTIVITY

SIA ALL

AIR CONDITIONING - EQUIPMENT COOLING SYSTEM - EXHAUST FAN - FUNCTIONAL DESCRIPTION

AIR CONDITIONING - EQUIPMENT COOLING SYSTEM - EXHAUST FAN - FUNCTIONAL DESCRIPTION

SIA ALL

D633AM102-SIA

AIR CONDITIONING - EQUIPMENT COOLING SYSTEM - LOW FLOW DETECTOR - FUNCTIONAL DESCRIPTION

General

The low flow detectors monitor the air flow and temperature of the equipment cooling air. The detectors send an alarm signal when the equipment cooling air flow is not within limits.

Functional Description

The low flow detectors have an internal BIT. At power-up, the detectors and alarm circuits do a test for correct operation. These are the indications of a detector failure:

- · Equipment cooling OFF amber light
- MASTER CAUTION and OVERHEAD annunciator lights.

The supply and exhaust low flow detectors supply a low and high alarm signals. These signals occur when the equipment cooling air flow is not within limits.

The low alarm signal gives these indications:

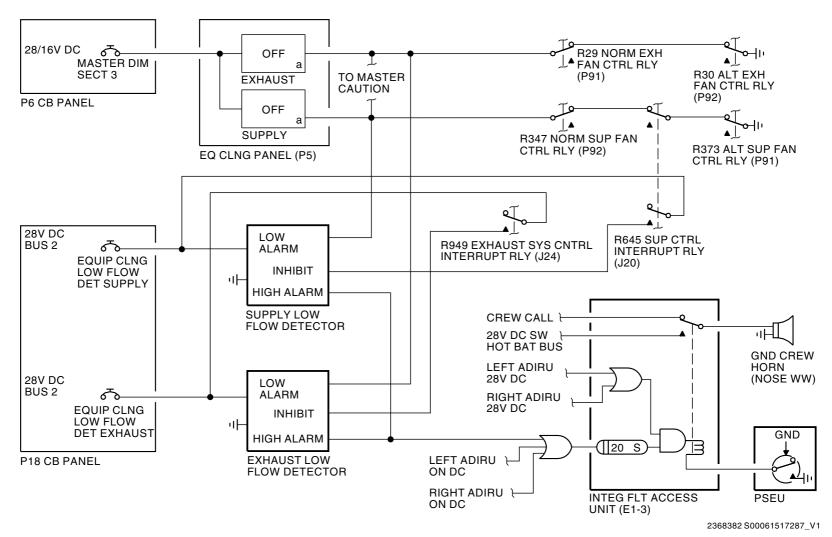
- Equipment cooling OFF amber light
- · MASTER CAUTION and OVERHEAD annunciator lights.

The supply system control interrupt relay (R645) causes an inhibit of the low alarm signal. This occurs when the equipment cooling system is in the smoke removal mode.

The ground crew horn automatically operates when the airplane is on the ground and these conditions are present:

- High alarm or the ON DC signal from either ADIRU is active for 20 seconds or more
- Left or right ADIRU switch is in the ALIGN or NAV position.

The exhaust system low flow sensor warning is inhibited for the duration of the flight when the smoke removal mode is initiated after a smoke warning in the forward cargo compartment.


SIA ALL

21-27-00

21-27-00-010

AIR CONDITIONING - EQUIPMENT COOLING SYSTEM - LOW FLOW DETECTOR - FUNCTIONAL DESCRIPTION

AIR CONDITIONING - EQUIPMENT COOLING SYSTEM - LOW FLOW DETECTOR - FUNCTIONAL DESCRIPTION

SIA ALL

EFFECTIVITY

D633AM102-SIA

THIS PAGE IS INTENTIONALLY LEFT BLANK

BOEING

737-7/8/8200/9/10 SYSTEM DESCRIPTION SECTION

AIR CONDITIONING - EQUIPMENT COOLING SYSTEM - OEV - ELECTRICAL FUNCTIONAL DESCRIPTION

General

When the airplane is on the ground, ground sensing relay R592 is energized, smoke control relay R648 is de-energized, and overboard exhaust valve command relay R650 is de-energized. Power goes through R650 to power the overboard exhaust valve DC motor actuator to the NORMAL position. When the valve actuator is in the NORMAL position, the valve position is a function of airflow (the valve is open until the airplane pressurizes). The valve is open on the ground.

When the airplane is in the air, ground sensing relay R592 is de-energized. In pressurized flight, the normal position for the overboard exhaust valve is closed. A 28V DC motor rotary actuator opens the valve in flight for more airflow or for smoke removal.

The overboard exhaust valve has three modes of operation. These are the three modes of operation:

- Normal
- · High flow
- · Smoke removal.

Normal Mode

These are the switch positions for the normal mode of operation:

- Left and right pack switch AUTO/OFF
- R RECIRC FAN switch AUTO

When the switches are in the normal position, the overboard exhaust valve command relay R650 is not energized. Power then goes through R650 to power the valve actuator to the NORMAL position.

High Flow Mode

The high flow mode increases the ventilation of the cabin through increased air flow.

- L PACK switch or R PACK switch HIGH
- R RECIRC FAN switch AUTO
- When the switches are in the high flow position, power goes to time delay relay R649. The cabin pressurization system provides an open or closed enable signal to relay K1 which controls the state of relay R649.
- If an open enable signal is present at relay K1, relay R649 is de-energized and power goes through R649 to energize relay R650. Power then goes through R650 to energize the overboard equipment valve actuator to the SMOKE (open) position.
- If a closed enable signal is present at relay K1, relay R649 is energized and the overboard equipment valve actuator will stay in the NORMAL (closed) position. Relay R649 will stay energized for 5 minutes once K1 relaxes.

Smoke Removal Mode

The smoke removal mode opens the overboard exhaust valve to remove smoke from the flight deck and E/E compartment.

These are the switch positions for the smoke removal mode:

- L PACK or R PACK switch HIGH
- R RECIRC FAN switch OFF

When the switches are in the smoke removal position, smoke control relay R648 energizes. Power then goes through R648 and R945 to energize the overboard exhaust valve relay R650. Once R650 is energized, power will go to the OEV actuator to energize the actuator to the SMOKE position which opens the valve.

21-27-00

EFFECTIVITY

SIA ALL

AIR CONDITIONING - EQUIPMENT COOLING SYSTEM - OEV - ELECTRICAL FUNCTIONAL DESCRIPTION

The forward fire alarm latch relay R945 and/or the aft fire alarm latch relay R946 are energized to the alarm state once the applicable FWD or AFT (or both) red cargo fire lights on the cargo fire control panel come on when given a fire indication by the smoke detectors.

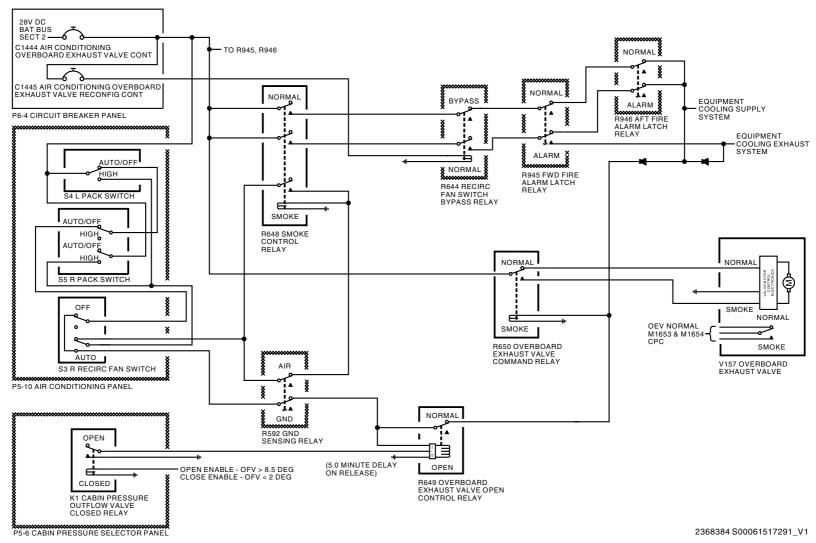
Open/Close Enable Signal

The cabin pressurization system supplies an open/close enable signal. The open enable signal lets the high flow mode energize the actuator to the SMOKE (OEV open) position. The close enable signal keeps the OEV actuator in the NORMAL position (OEV closed).

The open enable signal is set when the aft outflow valve is more than 8.5 (± 1.5) degrees from closed. The open enable signal stays true until the outflow valve is 2.0 (± 1.5) degrees from closed.

The closed enable signal is set when the outflow valve is less than 2.0 (± 1.5) degrees open. The closed enable signal energizes relay K1 which provides the ground needed to energize R649. Relay R649 remains energized until five minutes after relay K1 becomes de-energized. The five minute time delay lets the cabin pressure become stable.

EFFECTIVITY


21-27-00

SIA ALL

Page 26

AIR CONDITIONING - EQUIPMENT COOLING SYSTEM - OEV - ELECTRICAL FUNCTIONAL DESCRIPTION

AIR CONDITIONING - EQUIPMENT COOLING SYSTEM - OEV - ELECTRICAL FUNCTIONAL DESCRIPTION

EFFECTIVITY SIA ALL D633AM102-SIA 21-27-00

21-27-00-012

AIR CONDITIONING - EQUIPMENT COOLING SYSTEM - EXHAUST FANS

Purpose

The exhaust fans remove air from around electrical equipment to remove heat.

General Description

There are two exhaust fans (normal and alternate) for the exhaust system. Only one fan operates at a time.

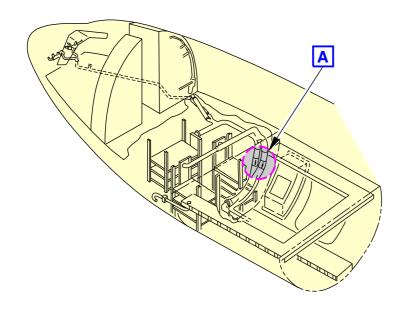
Location

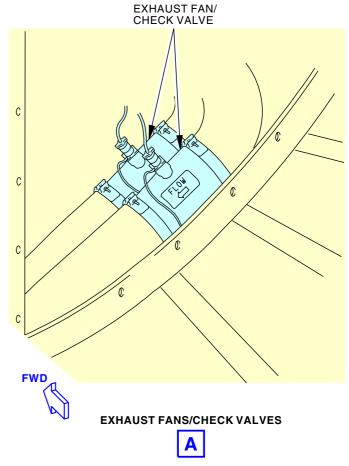
The exhaust fans and check valves are in the EE compartment. You get access to the exhaust fans through the right partition access panel of the forward cargo compartment.

Physical Description

The fans are single-stage fans with an integral induction motor. They each have a check valve and install as a single unit. The fans have thermal switches which protect the fans from overheat damage.

EFFECTIVITY


21-27-00


SIA ALL

737-7/8/8200/9/10 SYSTEM DESCRIPTION SECTION

AIR CONDITIONING - EQUIPMENT COOLING SYSTEM - EXHAUST FANS

2368385 S00061517293_V1

AIR CONDITIONING - EQUIPMENT COOLING SYSTEM - EXHAUST FANS

SIA ALL

THIS PAGE IS INTENTIONALLY LEFT BLANK

21-30-00

737-7/8/8200/9/10 SYSTEM DESCRIPTION SECTION

AIR CONDITIONING - PRESSURIZATION CONTROL - INTRODUCTION

Purpose

The airplane operates at altitudes where the oxygen density is not sufficient to sustain life. The pressurization control system keeps the airplane cabin interior at a safe altitude. This protects the passengers and crew from the effects of hypoxia (oxygen starvation). These are the sub-systems of the pressurization control:

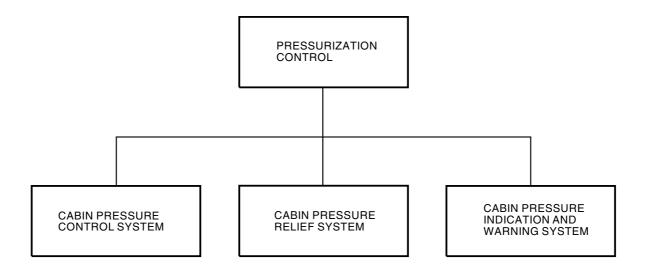
- · Cabin pressure control system
- · Cabin pressure relief system
- · Cabin pressure indication and warning system.

Abbreviations and Acronyms

- · ADIRU air data inertial reference unit
- · alt altitude
- altn alternate
- ARINC Aeronautical Radio Incorporated
- auto automatic
- BITE built-in test equipment
- · cont controller
- CPC cabin pressure controller
- E/E electronic equipment
- ELACT electronic actuator
- ESDS electro-static discharge sensitive
- flt alt flight altitude
- ft foot/feet
- fwd forward
- ISA international standard atmosphere
- · land alt landing altitude

EFFECTIVITY

- man manual
- · press pressure
- PSEU proximity switch electronic unit


- PSI pounds per square inch
- PSID pounds per square inch differential
- ref reference
- · sched schedule
- · SLFPM sea level feet per minute
- SMYDC stall management yaw damper computer

21-30-00

21-30-00-001

AIR CONDITIONING - PRESSURIZATION CONTROL - INTRODUCTION

2368386 S00061517297_V1

AIR CONDITIONING - PRESSURIZATION CONTROL - INTRODUCTION

EFFECTIVITY SIA ALL

21-30-00

Page 3 Sep 15/2021

21-30-00-001

AIR CONDITIONING - PRESSURIZATION CONTROL - GENERAL DESCRIPTION

General Description

The air conditioning packs force air into the airplane pressure vessel (cabin). Pressurization control maintains a safe cabin altitude. Pressurization control has these three sub-systems:

- · Cabin pressure control
- · Cabin pressure relief
- · Cabin pressure indication and warning.

Cabin Pressure Control System

The cabin pressure control system controls the rate that the air flows out of the cabin. These are the components of the cabin pressure control system:

- · Cabin pressure control module
- Two digital cabin pressure controllers (CPC)
- · Outflow valve
- Overboard exhaust valve.

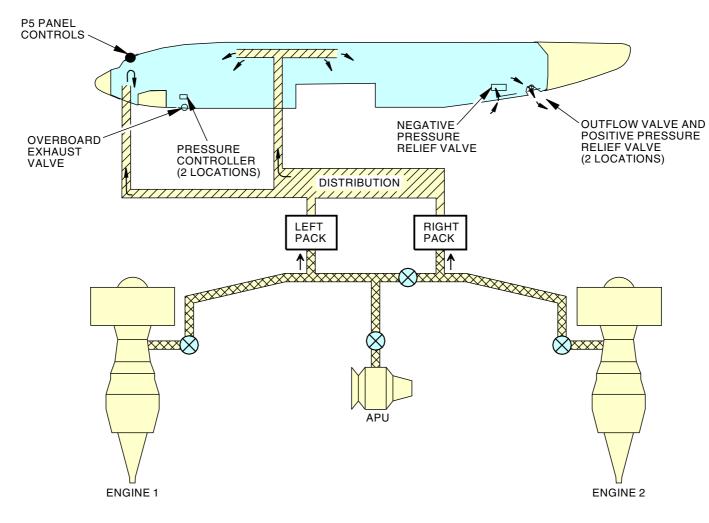
Cabin Pressure Relief System

The cabin pressure relief system is a fail safe system. It protects the airplane structure from overpressure and negative pressure if the pressurization control system fails. The cabin pressure relief system has these components:

- Two positive pressure relief valves
- Negative pressure relief valve.

Cabin Pressure Indication and Warning System

The cabin pressure indication and warning system gives you data about the pressurization system status. This system has these components:


- · Cabin altitude panel
- Aural warning module
- · Cabin altitude warning switch.

EFFECTIVITY

21-30-00

AIR CONDITIONING - PRESSURIZATION CONTROL - GENERAL DESCRIPTION

2368387 S00061517299_V1

AIR CONDITIONING - PRESSURIZATION CONTROL - GENERAL DESCRIPTION

SIA ALL

D633AM102-SIA

ECCN 9E991 BOEING PROPRIETARY - See title page for details

21-30-00

Page 5 Sep 15/2021

THIS PAGE IS INTENTIONALLY LEFT BLANK

737-7/8/8200/9/10 SYSTEM DESCRIPTION SECTION

AIR CONDITIONING - PRESSURIZATION CONTROL - AUTO MODE FLIGHT PROFILE - OPERATION

Purpose

The automatic (AUTO or ALTN) mode of the pressurization system controls the airplane pressure for all phases of flight:

- Ground
- Takeoff
- Climb
- Cruise
- Descent
- Landing.

Control Module Selections

To use the AUTO mode, make these selections on the cabin pressure control module:

- Select AUTO mode
- Set FLT ALT
- Set LAND ALT.

Ground

When all these conditions occur, the system is in the ground phase:

- Air/ground system shows that the left and right landing gear are on the ground
- N1 on both engines is less than 50% for at least 1.5 seconds (or engines are off)
- N2 on both engines is less than 84% for at least 1.5 seconds (or engines are off).

When the airplane is in the ground phase, the airplane is unpressurized and the outflow valve is open.

Takeoff

These changes cause the takeoff phase to start:

- N1 on both engines increases to more than 60% for at least 1.5 seconds
- N2 on both engines increases to more than 89% for at least 1.5 seconds.

In the takeoff phase, the system pressurizes the cabin to 0.1 psid below field elevation. This prevents the uncomfortable pressure bump (momentary pressure increase) at airplane rotation.

The cabin pressurization rate of change during the takeoff phase is 350 slfpm.

Climb

When the air/ground system indicates that the left and right landing gear are in the air, the climb phase starts.

The maximum cabin pressurization rate of change for depressurization is 750 slfpm.

Cruise

When the airplane external pressure decreases to within 0.25 psi of the FLT ALT selection (cruise altitude), the cruise phase starts.

In the cruise phase, the system maintains a constant cabin altitude. The cabin altitude will be the landing field elevation for flights with a flight altitude of 18,500 feet or less. For flights with a flight altitude above 18,500 feet, the cabin altitude will increase to a pressure differential that airplane is within a safe limit.

These are the pressure schedules:

Cruise Pressure Differential

FLIGHT ALTITUDE	SCHEDULE	
SEA LEVEL TO 18,500	LANDING FIELD ELEVATION	

21-30-00

EFFECTIVITY

737-7/8/8200/9/10 SYSTEM DESCRIPTION SECTION

AIR CONDITIONING - PRESSURIZATION CONTROL - AUTO MODE FLIGHT PROFILE - OPERATION

(Continued)

FLIGHT ALTITUDE	SCHEDULE		
18,500 TO 28,000	7.45 +/- 0.05 psid		
28,000 TO 37,000	7.80 +/- 0.05 psid		
37,000 AND ABOVE	8.35 +/- 0.05 psid		

NOTE: Deviations from flight altitude may cause the pressure to go as high as 8.45 psid to maintain a constant cabin altitude.

The maximum cabin altitude for most flights is 8,000 feet.

When the landing field elevation is more than 8,000 feet and the flight length is less than 60 minutes, this occurs:

- Flight crew enters the actual landing field elevation prior to departure
- During the cruise phase, the cabin altitude is the landing field elevation.

When the landing field elevation is more than 8,000 feet and the flight length is more than 60 minutes, this occurs:

- Flight crew enters 6,000 feet for the landing field elevation prior to departure
- During the cruise phase, the cabin altitude is per the pressure schedule
- Twenty minutes prior to landing the flight crew enters the actual landing field elevation
- The cabin altitude then climbs to the actual landing field elevation.

NOTE: When the cabin altitude increases to more than 10,000 feet, the cabin altitude warning alarm will sound. You can push the ALT HORN CUTOUT switch to deactivate the alarm.

Descent

SIA ALL

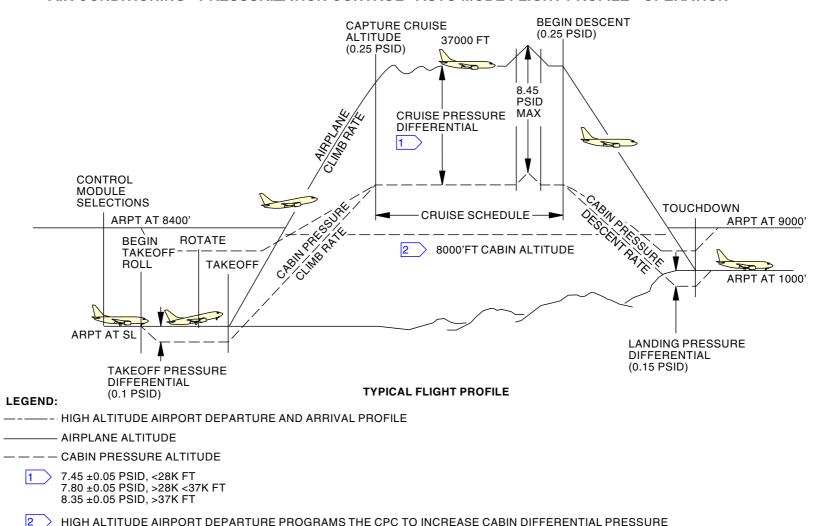
When the airplane external pressure increases to 0.25 psi more than the FLT ALT selection, the descent phase starts.

The cabin pressure controller (CPC) sets the cabin pressure rate of change for pressurization to 750 slfpm when a cargo fire occurs. This function is inhibited on the ground.

The maximum cabin pressurization rate of change for pressurization is 750 slfpm.

The system will pressurize the cabin to 0.15 psid below the LAND ALT selection (landing field elevation).

The 0.15 psid pressurization prevents pressure bumps from occurring during landing.


Landing

When the airplane lands and the requirements for the ground phase are met, the system depressurizes the cabin at a rate of 500 slfpm. When the cabin pressure is the same as the local ambient pressure, the outflow valve opens.

EFFECTIVITY

AIR CONDITIONING - PRESSURIZATION CONTROL - AUTO MODE FLIGHT PROFILE - OPERATION

TO MAINTAIN THE SCHEDULED CABIN ALTITUDE PER THE FLIGHT (CRUISE) ALTITUDE SELECTED.

2368388 S00061517301 V3

AIR CONDITIONING - PRESSURIZATION CONTROL - AUTO MODE FLIGHT PROFILE - OPERATION

SIA ALL D633AM102-SIA

Page 9 Sep 15/2021

AIR CONDITIONING - PRESSURIZATION CONTROL - COMPONENT LOCATION

Component Locations

The pressurization control system components are in these areas of the airplane:

- Flight compartment
- E/E compartment
- Forward EE compartment
- Section 47.

Flight Compartment

The cabin pressure control module and cabin altitude panel are on the P5 forward overhead panel.

EE Compartment

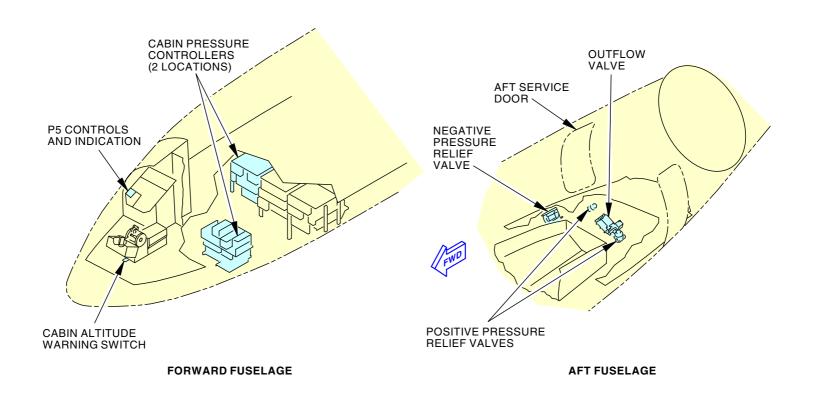
Cabin pressure controller 1 is on the E2-2 shelf. Cabin pressure controller 2 is on the E1-1 shelf.

Section 47

The outflow valve is on the aft right fuselage skin, below the aft service door.

There are two positive pressure relief valves. One is inboard of the outflow valve. The other is outboard of the outflow valve.

The negative pressure relief valve is on the aft right fuselage skin, forward of the outflow valve.


Forward E/E Compartment

The cabin altitude warning switches, S128 and S1153, are on the ceiling in the forward EE compartment.

EFFECTIVITY 21-30-00

AIR CONDITIONING - PRESSURIZATION CONTROL - COMPONENT LOCATION

2368389 S00061517303_V1

AIR CONDITIONING - PRESSURIZATION CONTROL - COMPONENT LOCATION

21-30-00

SIA ALL

EFFECTIVITY

BOEING

737-7/8/8200/9/10 SYSTEM DESCRIPTION SECTION

AIR CONDITIONING - PRESSURIZATION CONTROL - INTERFACE

General Description

Pressurization control can be automatic or manual.

There are two digital cabin pressure controllers (CPCs). Each CPC has its own systems interface and valve motor system. This gives the AUTO mode of control a dual redundant architecture. Only one CPC controls the outflow valve at any time. The other CPC is a backup. The active controller changes for every flight or when there is an autofail event.

The manual control mode overrides and bypasses the two CPCs. The manual control system has its own valve motor system. This gives the pressurization control system a triple redundant architecture.

The cabin pressure control system has these components:

- · Cabin pressure control module
- Digital cabin pressure controllers (2)
- Aft outflow valve assembly with three drive motors
- · Wiring, connectors, and power sources.

Electric Power

The system gets 28v dc power from these sources:

- · Battery bus
- DC bus 1
- DC bus 2.

Data Input Interface

The flight crew makes these inputs to the cabin pressure control module:

- · Pressurization mode
- Flight altitude
- · Landing altitude.

A sensor on each CPC senses pressure in the cabin.

Each CPC gets air data from both of the air data inertial reference units (ADIRUs), engine speed data from both of the stall management and yaw damper computers (SMYDCs), and air/ground logic from the proximity switch electronics unit (PSEU).

Each CPC uses position feedback from these valves that affect the pressurization system:

- · Left pack valve
- · Right pack valve
- Overboard exhaust valve.

Outflow Valve Interface

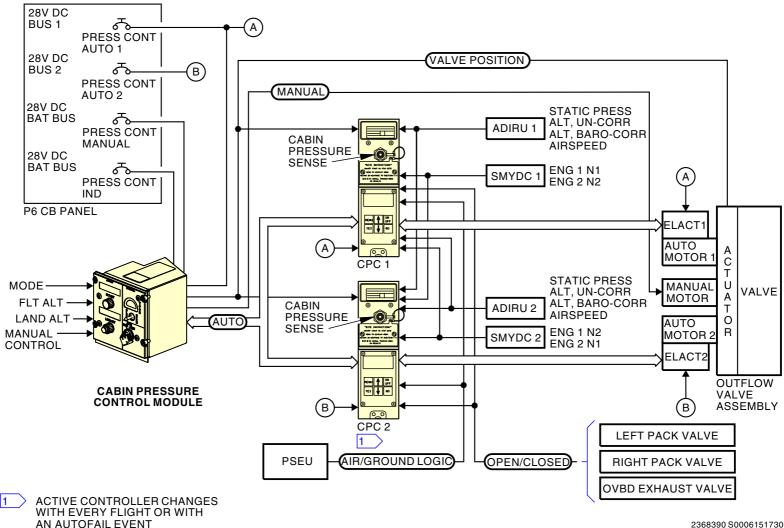
The outflow valve has these three motors:

- Two AUTO motors with electronic actuators
- One MANUAL motor.

The CPCs use data buses to interface with the electronic actuators on the valve. The electronic actuators drive the auto motors. Altitude switches in each electronic actuator override CPC signals and close the outflow valve if the cabin altitude is 14,500 feet. On airplanes that have the ultra high altitude landing option, the CPC will command the valve to close when the cabin altitude is above 15,500 feet. This function does not affect the manual mode of operation of the outflow valve.

In the manual mode, the pilot uses the control module toggle switch to operate the outflow valve. The manual motor has no electronic actuator, and no pressure switch.

The outflow valve gives position feedback to these units:


- Two CPCs
- P5 forward overhead panel.

21-30-00

21-30-00-005

AIR CONDITIONING - PRESSURIZATION CONTROL - INTERFACE

AIR CONDITIONING - PRESSURIZATION CONTROL - INTERFACE

2368390 S00061517305 V2

21-30-00-005

21-30-00 **EFFECTIVITY** SIA ALL

THIS PAGE IS INTENTIONALLY LEFT BLANK

737-7/8/8200/9/10 SYSTEM DESCRIPTION SECTION

AIR CONDITIONING - PRESSURIZATION CONTROL - CABIN PRESSURE CONTROL MODULE AND CABIN ALT PANEL

Purpose

The cabin pressure control module and the cabin altitude panel let the crew monitor and control the pressurization system.

Location

The cabin pressure control module and cabin altitude panel are on the P5 forward overhead panel.

Cabin Pressure Control Module

The cabin pressure control module has these controls and indications:

- Mode selector
- LAND ALT (Landing altitude) selector with display
- FLT ALT (flight altitude) selector with display
- · Manual mode toggle switch
- Aft outflow valve position indicator.

The mode selector has these positions:

- AUTO
- ALT alternate automatic operation
- MAN manual operation.

EFFECTIVITY

The FLT ALT selector sets cruise altitude from -1,000 to 42,000 ft in increments of 500 feet.

The LAND ALT selector sets landing field altitude from -1,000 to 14,000 ft (15,500 ft on airplanes that have the UHALF option) in increments of 50 feet.

The outflow valve switch is a three-position toggle switch, spring-loaded to the neutral position. It controls the aft outflow valve in the manual mode. These are the three positions of the outflow valve switch:

- CLOSE
- Neutral
- · OPEN.

An aft outflow valve position indicator shows the aft outflow valve position in all modes of operation.

These are the four system status lights above the control panel:

- AUTO FAIL (system failure)
- OFF SCHED DESCENT (deviation from flight plan)
- ALTN (operational mode)
- MANUAL (operational mode).

Cabin Altitude Panel

These are the indications and controls on the cabin altitude panel:

- · Cabin altitude/differential pressure indicator
- · Cabin rate of climb indicator
- ALT HORN CUTOUT switch.

The cabin altitude and differential pressure indicator is connected to the alternate static system. The large needle on the indicator shows cabin pressure differential in 0.2 psid increments. The small needle shows cabin altitude in 1,000 ft increments.

The rate of climb indicator detects pressure changes from a port on the back of the indicator.

When cabin altitude is more than a preset limit, the aural warning unit makes an intermittent beep alarm. The ALT HORN CUTOUT switch is used to stop the intermittent beep alarm.

Placards on the control panels are a reference for manual mode operations. They provide a reference for:

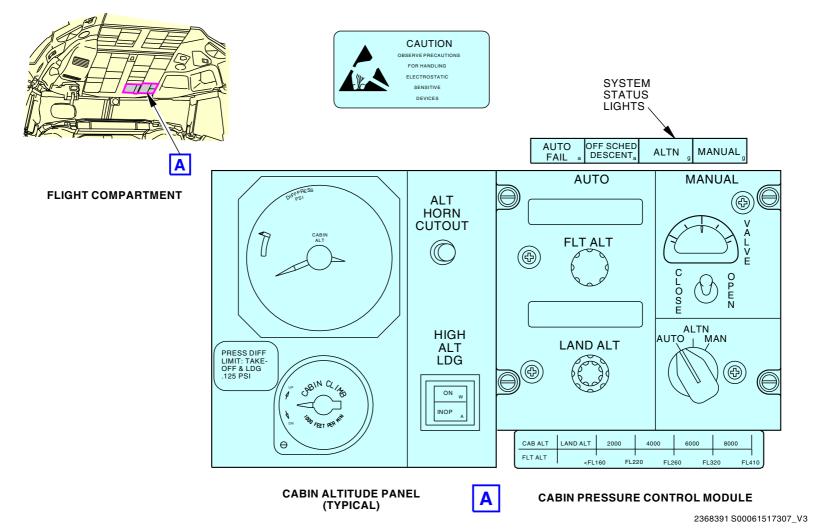
- Takeoff and landing pressure differential maximums
- Flight altitude to cabin altitude conversions.

21-30-00

Page 15

AIR CONDITIONING - PRESSURIZATION CONTROL - CABIN PRESSURE CONTROL MODULE AND CABIN ALT PANEL

Training Information Point


The cabin pressure control module has integrated circuit electronics. It is an Electrostatic Discharge Sensitive (ESDS) device. Use proper care when you handle it.

Flush operations of the vacuum toilet system can cause the cabin rate of climb indicator to momentarily show a rate of climb indication of 300-500 feet per minute. This is normal.

21-30-00

AIR CONDITIONING - PRESSURIZATION CONTROL - CABIN PRESSURE CONTROL MODULE AND CABIN ALT PANEL

AIR CONDITIONING - PRESSURIZATION CONTROL - CABIN PRESSURE CONTROL MODULE AND CABIN ALT PANEL

SIA ALL EFFECTIVITY 21-30-00

737-7/8/8200/9/10 SYSTEM DESCRIPTION SECTION

AIR CONDITIONING - PRESSURIZATION CONTROL - CABIN PRESSURE CONTROLLER

Purpose

The cabin pressure controllers (CPC) control cabin pressure when the system is in the AUTO or ALTN mode of operation.

General Description

There are two CPCs. The CPCs use digital circuitry.

The CPCs are part of a dual redundant system. They are active when the system operates in the AUTO or ALTN modes. Only one CPC operates the outflow valve at any given time. The other CPC acts as a backup.

The CPCs have pin selectable control functions. This function optimizes the system for specific mission profiles.

Location

The two CPCs are in the EE compartment. CPC 1 is on the E2-2 shelf. CPC 2 is on the E1-1 shelf.

Physical Description

Each CPC has these items:

- · Cabin pressure sensor
- BITE instruction plate
- Two-line LED display
- · BITE control buttons.

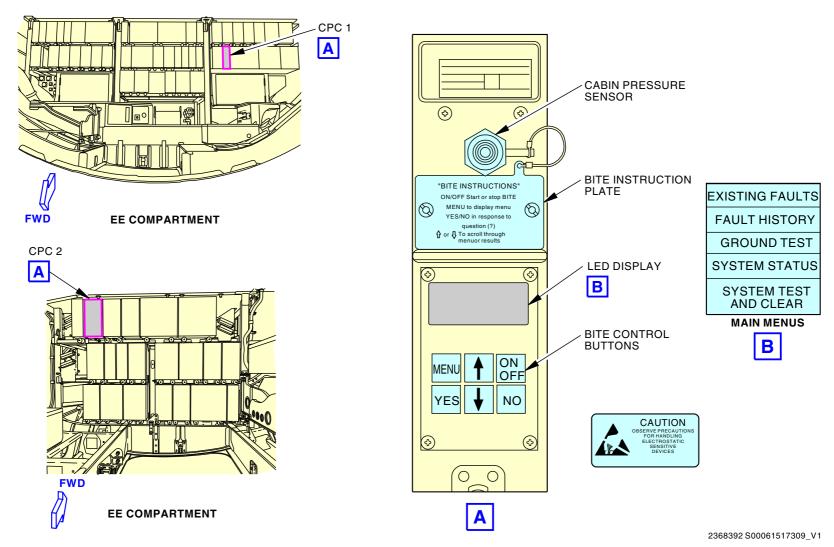
BITE

Each CPC has these main menus:

- EXISTING FAULTS
- FAULT HISTORY
- GROUND TESTS
- SYSTEM STATUS
- SYSTEM TEST AND CLEAR.

These are the functions of the BITE control buttons:

- ON/OFF button activates or de-activates the BITE functions in the CPC
- MENU button is used to display the BITE menus or to move up one level in the BITE menus
- YES button is used to respond to questions
- · NO button is used to respond to questions
- Up arrow button is used to scroll up through the menu or the results of a BITE test
- Down arrow button is used to scroll down through the menu or the results of a BITE test.


EFFECTIVITY

SIA ALL

AIR CONDITIONING - PRESSURIZATION CONTROL - CABIN PRESSURE CONTROLLER

AIR CONDITIONING - PRESSURIZATION CONTROL - CABIN PRESSURE CONTROLLER

21-30-00

SIA ALL

EFFECTIVITY

737-7/8/8200/9/10 SYSTEM DESCRIPTION SECTION

AIR CONDITIONING - PRESSURIZATION CONTROL - CPC - BITE - MAIN MENU

General Description

A BITE module is on the front face of each cabin pressure controller. The BITE does checks of these hardware and software:

- · All system components
- System interfaces
- · Overall system performance.

These selections are available when you push the MENU button and then the UP and DOWN arrows:

- EXISTING FAULTS
- FAULT HISTORY
- GROUND TESTS
- SYSTEM STATUS
- SYSTEM TEST AND CLEAR.

EXISTING FAULTS

EXISTING FAULTS shows faults that are present. From the main menu EXISTING FAULTS, there are faults and fault details.

FAULT HISTORY

FAULT HISTORY shows previous faults. From the main menu FAULT HISTORY, there are faults and fault details.

GROUND TESTS

GROUND TEST has these two submenus:

- DISPLAY TEST
- SYSTEM TEST.

The DISPLAY TEST does a test of the LED display.

The SYSTEM TEST does a test of the cabin pressurization system.

SYSTEM STATUS

SYSTEM STATUS has these two submenus:

- PRESENT STATUS
- SYSTEM CONFIGURATION (SYSTEM CONFIG).

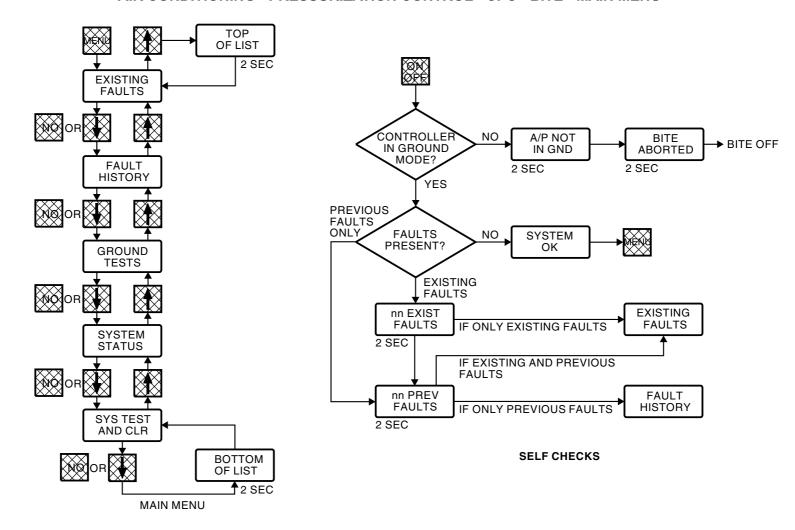
PRESENT STATUS shows the current inputs to the cabin pressure controllers.

SYSTEM CONFIG shows the system configuration.

SYSTEM TEST AND CLEAR

The SYSTEM TEST AND CLEAR main menu selection prepares the controller for a system test and clears the FAULT HISTORY.

EFFECTIVITY


21-30-00

SIA ALL

Page 20

AIR CONDITIONING - PRESSURIZATION CONTROL - CPC - BITE - MAIN MENU

2368393 S00061517311_V1

21-30-00

AIR CONDITIONING - PRESSURIZATION CONTROL - CPC - BITE - MAIN MENU

D633AM102-SIA

ECCN 9E991 BOEING PROPRIETARY - See title page for details

Page 21 Sep 15/2022

SIA ALL

EFFECTIVITY

AIR CONDITIONING - PRESSURIZATION CONTROL - CPC - BITE - EXISTING FAULTS

EXISTING FAULTS

EXISTING FAULTS shows faults that are present. From the main menu EXISTING FAULTS, there are faults and fault details. Faults are maintenance messages of the primary problem. For more information of a fault, there are fault details.

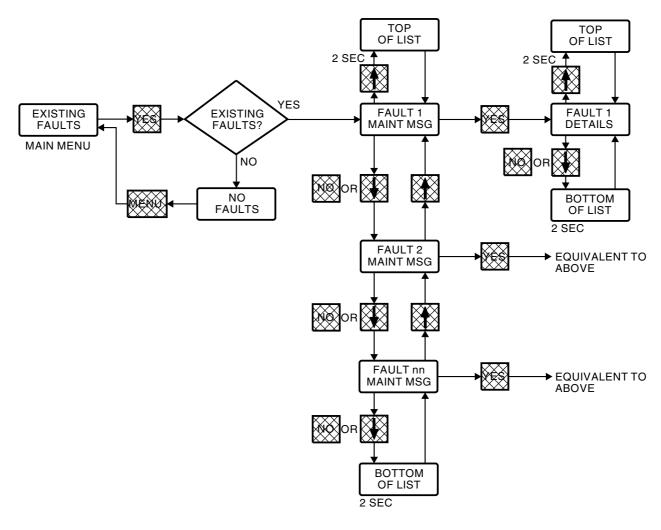
From the EXISTING FAULTS menu, push the YES button. If there are no faults, the display shows NO FAULTS. To go back to the main menu, push the MENU button.

If there is a fault or faults, the first fault shows on the display. To see the next fault, push the NO or DOWN arrow button. If there are no more faults, the display shows BOTTOM OF LIST for 2 seconds.

To see the fault details for one of the faults, push the YES button. Then the display shows the fault details for that fault. If you push the NO or DOWN arrow button, the display shows the next fault detail for the same fault. If there are no more fault details, the display shows BOTTOM OF LIST for 2 seconds.

Subsequent maintenance action is needed to resolve those maintenance message(s) that show in the EXISTING FAULTS.

EFFECTIVITY


21-30-00

SIA ALL

Page 22

AIR CONDITIONING - PRESSURIZATION CONTROL - CPC - BITE - EXISTING FAULTS

2368394 S00061517313 V1

AIR CONDITIONING - PRESSURIZATION CONTROL - CPC - BITE - EXISTING FAULTS

SIA ALL

D633AM102-SIA

21-30-00-009

AIR CONDITIONING - PRESSURIZATION CONTROL - CPC - BITE - FAULT HISTORY

FAULT HISTORY

FAULT HISTORY shows previous faults that are in the memory and have not been cleared.

From the FAULT HISTORY menu, push the YES button. If there are no faults, the display shows NO FAULT HISTORY. To go back to the main menu, push the MENU button.

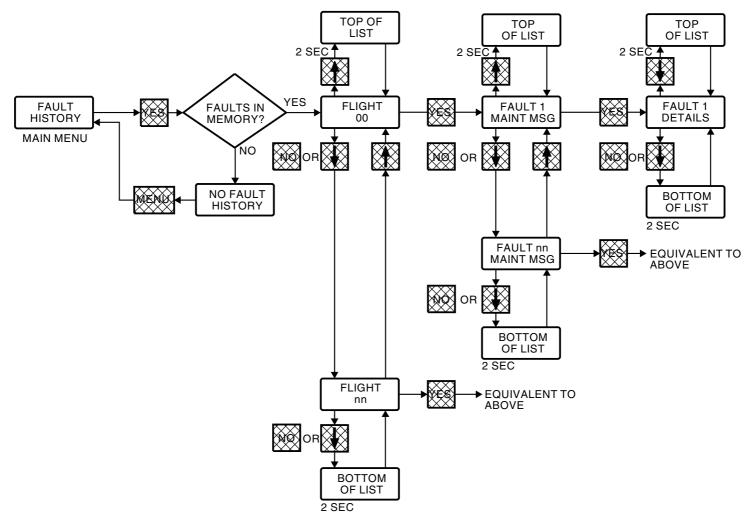
If there are faults, the display shows FLIGHT 00. To show the next flight leg, push the NO or DOWN arrow button. Then the display shows the next flight leg. If there are no more flight legs in memory, the display shows BOTTOM OF LIST for 2 seconds. The controller can have up to 10 flight legs in memory.

Each flight leg can have faults and fault details. To show a fault for a flight leg, push the YES button. The display shows the fault. If you push the NO or DOWN arrow button, the display shows the next fault. If there are no more faults, the display shows BOTTOM OF LIST for 2 seconds.

To show fault details for each fault, push the YES button. If you want to see more fault details you push the NO or DOWN arrow button. If there are no more fault details, the display shows BOTTOM OF LIST for 2 seconds.

Maintenance message(s) that show in the FAULT HISTORY are for reference only and do not require maintenance action.

EFFECTIVITY


21-30-00

SIA ALL

Page 24

AIR CONDITIONING - PRESSURIZATION CONTROL - CPC - BITE - FAULT HISTORY

2368395 S00061517315 V1

AIR CONDITIONING - PRESSURIZATION CONTROL - CPC - BITE - FAULT HISTORY

EFFECTIVITY SIA ALL D633AM102-SIA 21-30-00

Page 25 Sep 15/2022

AIR CONDITIONING - PRESSURIZATION CONTROL - CPC - BITE - GROUND TESTS - SYSTEM TEST

SYSTEM TEST

SYSTEM TEST does a test of the cabin pressurization system.

From the GROUND TEST menu, push the YES button. The display shows DISPLAY TEST. If you push the NO or DOWN arrow button, the display shows SYSTEM TEST.

When you push the YES button, the controller does a check to find if the system is in auto mode. If the system is not in auto mode, the display shows SYS IN MANUAL for two seconds. Then the display shows SELECT AUTO.

If you push the YES button when the system is in auto mode, the controller does a check to find if the other controller is in BITE. If the other controller is in BITE, the display shows these things:

- BOTH SYS IN IBIT for two seconds
- IBIT ABORTED for two seconds
- SYSTEM TEST.

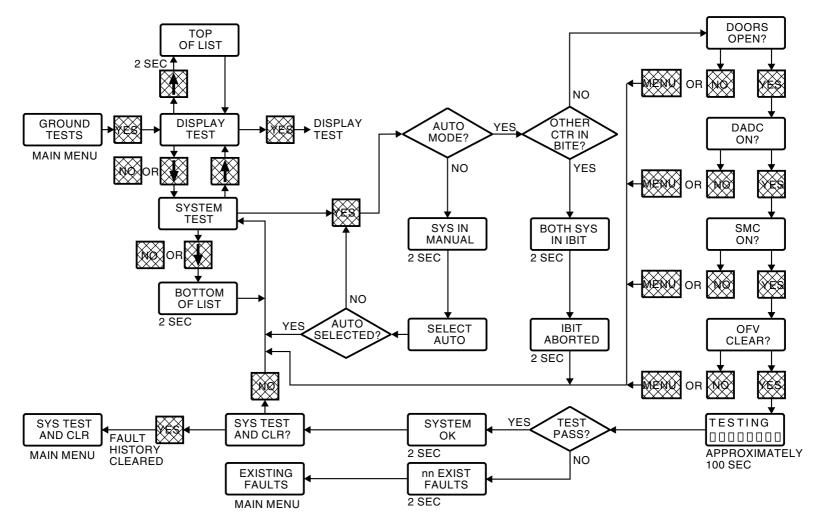
If the other controller is not in BITE, questions appear in sequence. For each of these questions, it is necessary to push the YES or NO button. If you push the YES button after each question, the display shows the next question. If you push the YES button after the last question, the display shows TESTING.

The lower digits come on sequentially to show that the test is in progress. For older controllers, each of the 8 lower digits come on at 12 second intervals. This takes approximately 100 seconds. For newer controllers, only five of the lower digits come on.

If there is no fault while in test, the display shows SYSTEM OK. Then the display shows SYSTEM TEST AND CLEAR?. If you push the YES button, all faults clear from fault history. If you push the NO button, the display shows SYSTEM TEST.

If there is a fault during TESTING, the display shows nn EXIST FAULTS for 2 seconds. Then the display shows EXISTING FAULTS menu.

If you push the menu button at any time during the system test, the display shows SYSTEM TEST.


SIA ALL

21-30-00

Page 26

AIR CONDITIONING - PRESSURIZATION CONTROL - CPC - BITE - GROUND TESTS - SYSTEM TEST

2368396 S00061517317_V1

AIR CONDITIONING - PRESSURIZATION CONTROL - CPC - BITE - GROUND TESTS - SYSTEM TEST

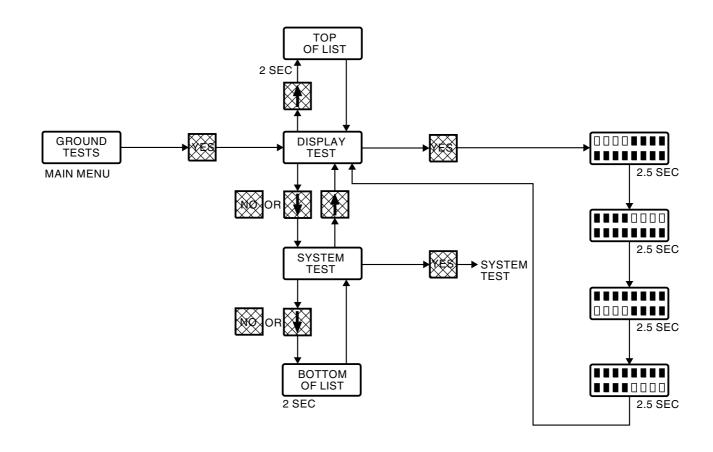
SIA ALL

D633AM102-SIA

ECCN 9E991 BOEING PROPRIETARY - See title page for details

AIR CONDITIONING - PRESSURIZATION CONTROL - CPC - BITE - GROUND TESTS - DISPLAY TEST

DISPLAY TEST


DISPLAY TEST does a test of all 16 digits of the LED display.

From the GROUND TEST menu, push the YES button. The display shows DISPLAY TEST. If you push the YES button, the test starts. Then four digits at a time turn on for 2.5 seconds. After the test is complete, the display shows DISPLAY TEST.

21-30-00

AIR CONDITIONING - PRESSURIZATION CONTROL - CPC - BITE - GROUND TESTS - DISPLAY TEST

2368397 S00061517319_V1

AIR CONDITIONING - PRESSURIZATION CONTROL - CPC - BITE - GROUND TESTS - DISPLAY TEST

SIA ALL

D633AM102-SIA

THIS PAGE IS INTENTIONALLY LEFT BLANK

737-7/8/8200/9/10 SYSTEM DESCRIPTION SECTION

AIR CONDITIONING - PRESSURIZATION CONTROL - CPC - BITE - SYSTEM STATUS MENU

SYSTEM STATUS

SYSTEM STATUS has these two-sub menus:

- PRESENT STATUS
- SYSTEM CONFIGURATION (SYSTEM CONFIG).

PRESENT STATUS

PRESENT STATUS shows system parameters. From the SYSTEM STATUS menu, push the YES button. Then the display shows PRESENT STATUS. If you push the YES button, the display shows the first system parameter. To see more parameters, push the NO or the DOWN arrow button. If there are no more parameters, the display shows BOTTOM OF LIST for 2 seconds.

This table shows each parameter and what they mean.

PARAMETER	MESSAGE		
FLT ALT XXXXXXFT	Shows current selection of flight altitude		
LAND ALT XXXXXXFT	Shows current selection of landing altitude		
AUTO/MAN	Shows if the system is in Auto or Manual		
OFV XXXX DEG OPEN	Shows current position of outflow valve		
AUTO FAIL	Shows if auto fail is present		
CAB PRES XX.XXPSI	Shows current cabin pressure		
CARGO HT VALVE OP (CL)	Shows position of the cargo heat valve		
L PACK FLOW ON (OFF)	Shows status of left air conditioning pack		
R PACK FLOW ON (OFF)	Shows status of right air conditioning pack		

SYSTEM CONFIGURATION

SYSTEM CONFIG shows the system configuration. From the SYSTEM STATUS menu, push the YES button. Then the display shows PRESENT STATUS. When you push the NO or DOWN arrow button, the display shows SYSTEM CONFIG. If you push the YES button, the display shows the first configuration item. To see more configuration items, push the NO or DOWN arrow button. If there are no configuration items, the display shows BOTTOM OF LIST for 2 seconds.

Configuration Items

This table shows each configuration items and what they mean.

CONFIGURATION ITEM	MESSAGE		
CONTRLR XXXXX HRS	Hours of operation on the controller		
PNL TIME XXXXX HRS	Hours of operation on the control panel		
ROC SEL	HI = 600 ft/min LOW = 750 ft/min		
ROD SEL 2	See table below		
MASTERID	HI - Not master controller LOW = master controller		
QFE SEL	HI = QFE not selectedLOW = QFE selected		
SLAVE ID	HI = Not slave controller LOW = slave controller		
OFV CONN	HI = OFV not connected LOW = OFV connected		
IBIT IN	HI = Other controller not in test LOW = Other controller in test		
CARGO HT	Indicates position of overboard exhaust valve actuator.		

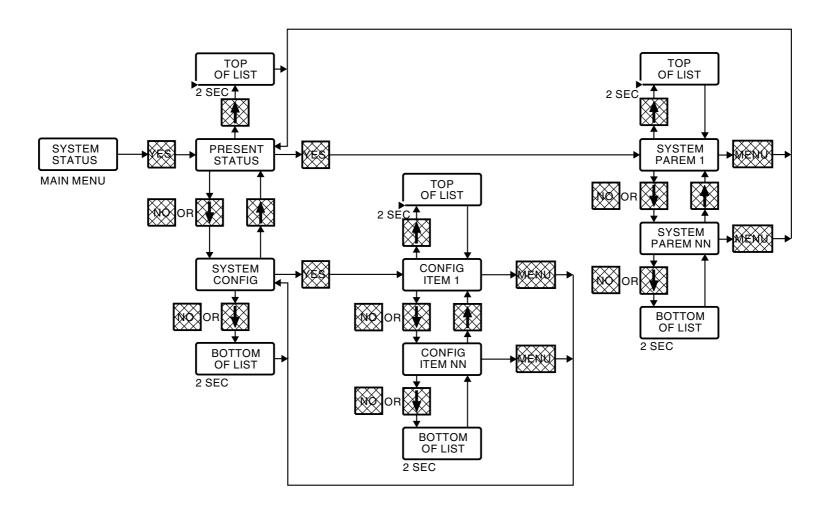
EFFECTIVITY

21-30-00

AIR CONDITIONING - PRESSURIZATION CONTROL - CPC - BITE - SYSTEM STATUS MENU

CONFIGURATION ITEM	MESSAGE		
MANUAL IN	HI = Manual not selected LOW = Manual selected.		
L A/G	HI = Air mode LOW = Ground mode.		
R A/G	HI = Air mode LOW = Ground mode.		
SHOP MODE	HI = Not shop modeLOW = Shop mode.		
L PACK VLV	HI = Left pack onLOW = Left pack off.		
R PACK VLV	HI = Right pack onLOW = Right pack off.		
41K SEL	HI = 41K altitude option not selected, LOW = 41K altitude option selected.		
AUTO CTL IN	HI = Other controller in control. LOW = Other controller not in control.		
PNL OK	HI = Selector Pnl not failed LOW = Selector Pnl failed.		

This table shows the inputs for ROD SEL 1 and 2.


INPUT	INPUT STATE			
ROD SEL 2	LO	HI	LO	HI
ROD SEL 1	LO	LO	HI	HI
Descent Rate:	-750	-350	-500	-350

EFFECTIVITY

21-30-00

AIR CONDITIONING - PRESSURIZATION CONTROL - CPC - BITE - SYSTEM STATUS MENU

2368398 S00061517321_V1

AIR CONDITIONING - PRESSURIZATION CONTROL - CPC - BITE - SYSTEM STATUS MENU

SIA ALL
D633AM102-SIA

AIR CONDITIONING - PRESSURIZATION CONTROL - CPC - BITE - SYSTEM TEST AND CLEAR

SYSTEM TEST AND CLEAR

SYSTEM TEST AND CLEAR prepares the controller for a system test and to automatically clear the fault history.

When you push the YES button, the controller does a check to find if the system is in the auto mode. If the system is not in auto mode, the display shows SYS IN MANUAL for two seconds. Then the display shows SELECT AUTO.

If you push the YES button when the system is in the auto mode, the controller does a check to find if the other controller is in BITE. If the other controller is in BITE, the display shows these things:

- · BOTH SYS IN IBIT for two seconds
- IBIT ABORTED for two seconds
- SYS TEST AND CLR.

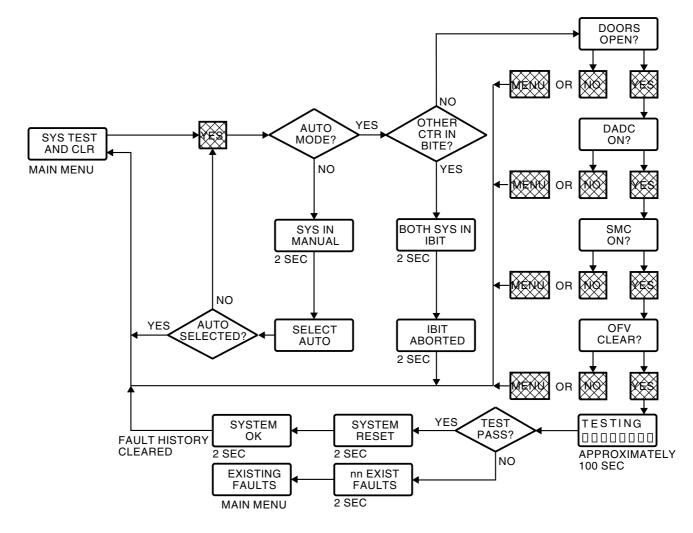
For each of these questions, you must push the YES or NO button. If you push the YES button after each question, the display shows the next question. If you push the YES button after the last question, the display shows TESTING.

The lower digits come on sequentially to show that the test is in progress. For older controllers, each of the 8 lower digits come on at 12 second intervals. This takes approximately 100 seconds. For newer controllers, only five of the lower digits come on.

If there is no fault while in test, the display shows SYSTEM OK for 2 seconds. Then the display shows SYS TEST AND CLR.

If there is a fault during TESTING, the display shows nn EXIST FAULTS for 2 seconds. Then the display shows EXISTING FAULTS menu.

EFFECTIVITY


21-30-00

SIA ALL

Page 34

AIR CONDITIONING - PRESSURIZATION CONTROL - CPC - BITE - SYSTEM TEST AND CLEAR

2368399 S00061517323_V1

AIR CONDITIONING - PRESSURIZATION CONTROL - CPC - BITE - SYSTEM TEST AND CLEAR

SIA ALL

D633AM102-SIA

ECCN 9E991 BOEING PROPRIETARY - See title page for details

AIR CONDITIONING - PRESSURIZATION CONTROL - AFT OUTFLOW VALVE

Purpose

The aft outflow valve controls the air flow out of the airplane fuselage.

Location

The valve is on the lower right fuselage below the aft service door.

Physical Description

The outflow valve has these parts:

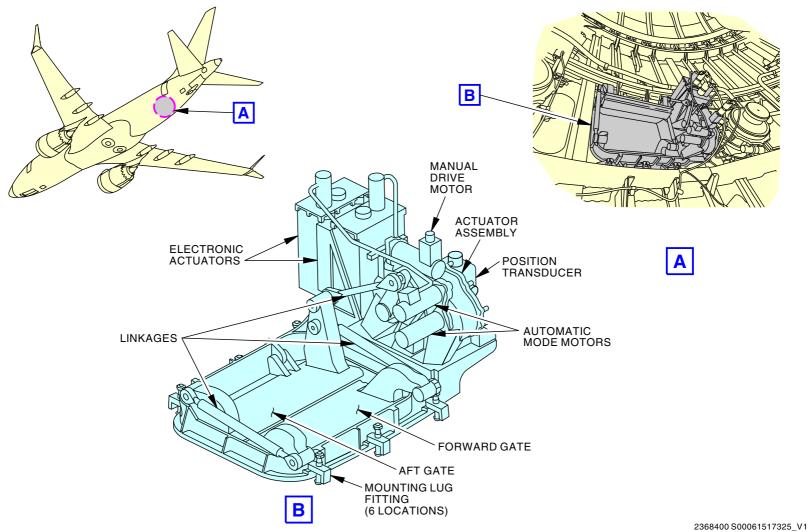
- · Two valve gates
- Actuator assembly and linkage
- Position transducer
- Two automatic mode motors and one manual mode motor
- Two electronic actuators.

Functional Description

The valve is a thrust recovery, double gate type valve. The valve has two 28v dc motors and one 48v dc motor. Only one motor drives the valve at a time. All three motors use the same actuator mechanism.

Each electronic actuator on the valve has a fail-safe aneroid switch. The switch causes the valve to go fully closed if the cabin pressure altitude gets to 14,500 ft (above 15,500 ft on airplanes that have the UHALF option). This function overrides normal automatic control only. It does not override manual mode of the valve.

A position transducer on the valve assembly provides a signal to the valve position indicator on the P5 forward overhead panel during all modes of operation.


The valve position transducer also sends signals to the two cabin pressure controllers. This gives the controllers valve position feedback for automatic and alternate modes of operation.

EFFECTIVITY

21-30-00

AIR CONDITIONING - PRESSURIZATION CONTROL - AFT OUTFLOW VALVE

AIR CONDITIONING - PRESSURIZATION CONTROL - AFT OUTFLOW VALVE

EFFECTIVITY SIA ALL

737-7/8/8200/9/10 SYSTEM DESCRIPTION SECTION

AIR CONDITIONING - PRESSURIZATION CONTROL - AUTO MODE - FUNCTIONAL DESCRIPTION

Purpose

The automatic (AUTO) mode of the pressurization control system keeps the airplane pressurized for all phases of the flight.

Functional Description

The AUTO mode circuitry has these parts:

- · Redundant 28v dc power sources
- Cabin pressure control module on P5
- Two digital cabin pressure controllers (CPCs)
- Two AUTO mode dc motors with electronic actuators on the aft outflow valve assembly
- · Circuit wiring and connectors.

When the pressurization mode selector on the cabin pressure control module is in the AUTO position, it sets the pressurization control system to automatic operation.

The automatic control system has a dual redundant architecture. The two CPCs are identical. Rack pin connections identify the controllers as CPC 1 and CPC 2.

Only one CPC controls the outflow valve at any time. The other CPC is a backup. The system changes active control from one CPC to the other with each flight. This keeps wear equal on the mechanical drive components of the two systems.

The CPCs use data from these systems to determine flight phase:

- Both air data inertial reference units (ADIRUs)
- Both stall management and yaw damper computers (SMYDCs)
- Proximity switch electronics unit (PSEU).

EFFECTIVITY

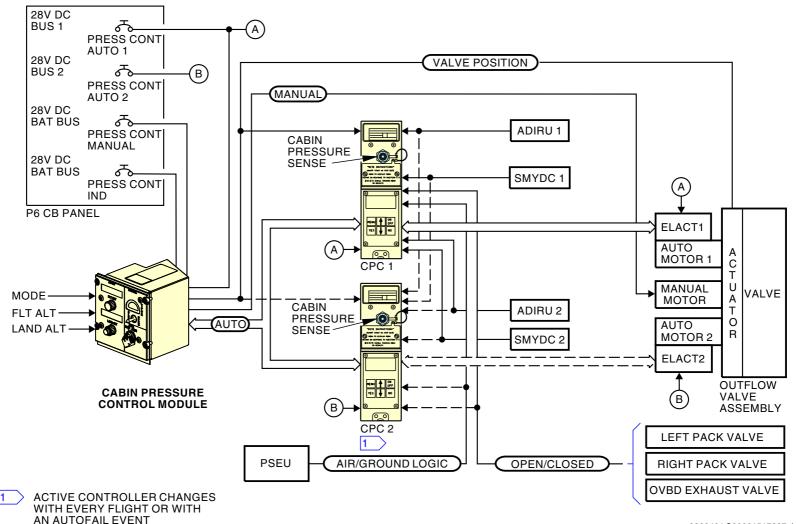
The CPC calculates a target cabin pressure in response to the flight phase and inputs from the cabin pressure control panel.

The CPC compares the target pressure to the pressure at its sense port. If there is a difference, the CPC sends an open or close command to the electronic actuator on the aft outflow valve assembly. The electronic actuator operates its valve motor. The motor moves the outflow valve through a mechanical drive train. The active controller modulates the aft outflow valve to control cabin pressure and rate of pressure change.

Outflow valve position feedback to the CPC verifies proper valve operation (closed loop feedback).

The air conditioning pack valves and the overboard exhaust valve give position feedback to the CPCs.

Both controllers run continuous BITE tests. If the active CPC becomes inoperative, the other CPC automatically takes control.


21-30-00

SIA ALL

Page 38

AIR CONDITIONING - PRESSURIZATION CONTROL - AUTO MODE - FUNCTIONAL DESCRIPTION

2368401 S00061517327_V2

AIR CONDITIONING - PRESSURIZATION CONTROL - AUTO MODE - FUNCTIONAL DESCRIPTION

SIA ALL EFFECTIVITY

D633AM102-SIA

Page 39 Sep 15/2022

737-7/8/8200/9/10 SYSTEM DESCRIPTION SECTION

AIR CONDITIONING - PRESSURIZATION CONTROL - AUTO FAIL

Purpose

The amber AUTO FAIL light gives the flight crew indication that one or both auto channels are inoperative.

General Description

The automatic pressurization control system has a dual redundant architecture. One digital cabin pressure controller (CPC) is active and maintains pressurization control. The other CPC is a backup.

If the active CPC controller fails, the system changes pressurization control to the backup (alternate) CPC.

The two CPCs automatically do start-up and continuous BITE tests. These tests look at both systems to the LRU level. When the active CPC BITE detects a fault or failure, it transfers active control to the backup CPC.

These things cause the auto fail function:

- Power loss
- Cabin altitude rate of change is too high (>2,000 slfpm)
- Cabin altitude is too high (>15,800 ft)
- · Wiring failures
- · Outflow valve component failures
- · CPC failures
- Cabin differential pressure is too high (>8.75 psi).

Single Channel Failure

The system automatically changes pressurization control to the backup controller if the active controller fails.

If the system is in the AUTO mode when an auto fail event occurs, these lights come on:

Amber AUTO FAIL light

EFFECTIVITY

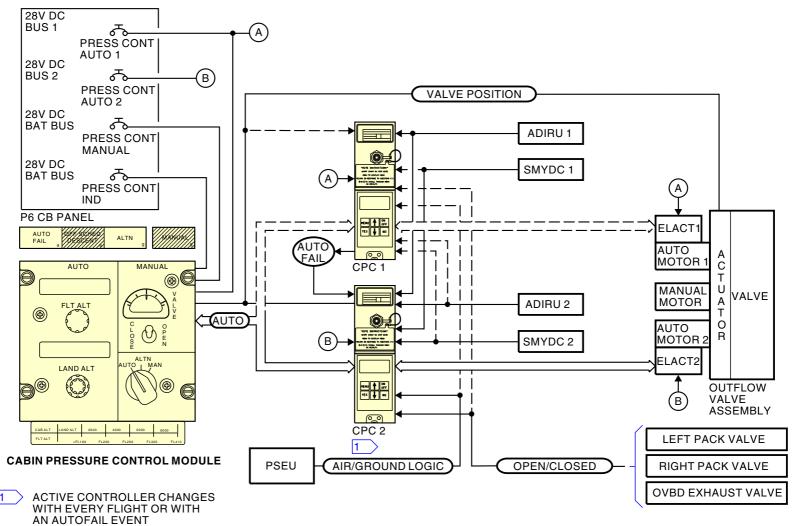
- MASTER CAUTION and AIR COND annunciator lights
- · Green ALTN light.

The ALTN light shows that the backup system is active. The AUTO FAIL light goes off when you select the ALTN position on the mode selector.

Dual Channel Failure

These are the indications when both CPC systems fail:

- The AUTO FAIL and MASTER CAUTION lights come on
- The FLT ALT and LAND ALT displays show five dashes (----).


If both CPCs fail, the ALTN light does not come on. This indicates that the system cannot transfer control to an operative automatic controller.

21-30-00

21-30-00-017

AIR CONDITIONING - PRESSURIZATION CONTROL - AUTO FAIL

2368402 S00061517329_V2

AIR CONDITIONING - PRESSURIZATION CONTROL - AUTO FAIL

SIA ALL D633AM102-SIA

Page 41 Sep 15/2022

AIR CONDITIONING - PRESSURIZATION CONTROL - INDICATION - FUNCTIONAL DESCRIPTION

General

The cabin pressure control system has these indications:

- AUTO FAIL
- OFF SCHED DESCENT
- ALTN
- MANUAL.

AUTO FAIL Light

The AUTO FAIL light is usually controlled by the cabin pressure control module. If the cabin pressure control module fails, the AUTO FAIL light is controlled by relays R556, R557, and R558.

OFF SCHED DESCENT Light

The OFF SCHED DESCENT light is controlled by these units:

- CPC 1
- CPC 2.

The CPC turns on the OFF SCHED DESCENT light when an off schedule descent is detected by a CPC.

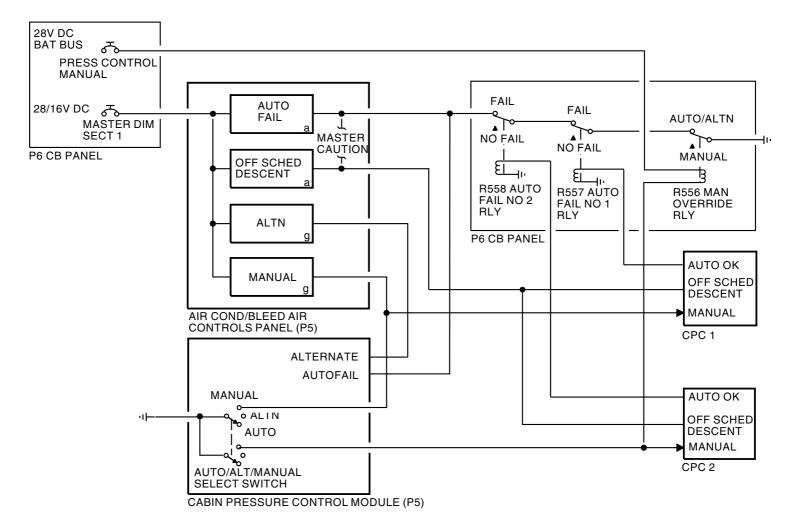
ALTN Light

The ALTN light is controlled by the cabin pressure control module.

The cabin pressure control module turns on the ALTN light when the backup CPC is active.

MANUAL Light

The MANUAL light is controlled by the cabin pressure control module.


The CPCs are deactivated and the MANUAL light comes on when the selector switch is in the MANUAL position.

SIA ALL

21-30-00

AIR CONDITIONING - PRESSURIZATION CONTROL - INDICATION - FUNCTIONAL DESCRIPTION

2368403 S00061517331_V1

AIR CONDITIONING - PRESSURIZATION CONTROL - INDICATION - FUNCTIONAL DESCRIPTION

SIA ALL

D633AM102-SIA

ECCN 9E991 BOEING PROPRIETARY - See title page for details

21-30-00

Page 43 Sep 15/2022

737-7/8/8200/9/10 SYSTEM DESCRIPTION SECTION

AIR CONDITIONING - PRESSURIZATION CONTROL - OFF SCHED DESCENT LIGHT

General Description

The off schedule descent feature works only in the AUTO and ALTN modes. It is not a feature of the MANUAL mode.

If it is necessary to land immediately after takeoff, the pressurization control system programs the pressurization system for landing. The off schedule descent (OFF SCHED DESCENT) indication is part of this feature. The light tells you that the system will control cabin pressure for a return to the take-off field.

An off schedule descent begins when the airplane starts to descend off schedule (before it gets to cruise altitude).

Functional Description

If the airplane begins a descent before it gets to the FLT ALT selected on the control module, these things happen:

- · OFF SCHED DESCENT light comes on
- MASTER CAUTION and AIR COND annunciator lights come on
- Pressurization control system schedules the cabin pressure for return to the take-off field.

The OFF SCHED DESCENT light will go out if any one of these conditions occur:

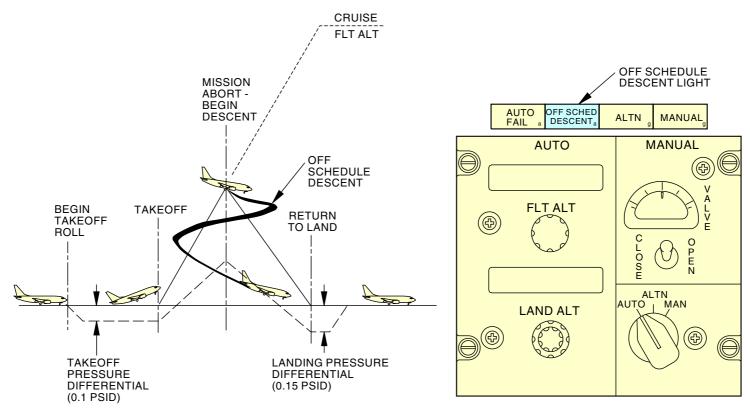
· Airplane begins to climb again

EFFECTIVITY

- FLT ALT is reset to the current altitude
- Pilot selects manual (MAN) mode
- Airplane lands.

If the flight crew diverts to a field other than the take-off field, the flight crew must do these steps to reset the pressure controller:

- Reset the FLT ALT to the current altitude
- Set the landing altitude in the LND ALT window on the control panel to the landing field elevation.


The pressure control system cancels the off schedule descent feature for the flight when the airplane gets to the FLT ALT set on the cabin pressure control module.

21-30-00

21-30-00-019

AIR CONDITIONING - PRESSURIZATION CONTROL - OFF SCHED DESCENT LIGHT

TYPICAL OFF SCHEDULE DESCENT PROFILE

CABIN PRESSURE CONTROL MODULE (P5)

LEGEND:

———— AIRPLANE ALTITUDE

———— CABIN PRESSURE ALTITUDE

----- MISSION SCHEDULE ALTITUDE

2368404 S00061517333_V1

AIR CONDITIONING - PRESSURIZATION CONTROL - OFF SCHED DESCENT LIGHT

SIA ALL

21-30-00

Page 45 Sep 15/2022

737-7/8/8200/9/10 SYSTEM DESCRIPTION SECTION

AIR CONDITIONING - PRESSURIZATION CONTROL - MANUAL MODE - GENERAL DESCRIPTION

Purpose

The MANUAL mode gives the flight crew direct control of the outflow valve.

General Description

The MANUAL mode has these parts:

- · 28v dc bat bus power sources
- · Cabin pressure control module
- MANUAL mode DC motor on the aft outflow valve assembly
- Circuit wiring and connectors.

When the mode selector is in the MANUAL position, these things occur:

- · Automatic control systems are disarmed
- · Control module outflow valve switch arms
- Green MANUAL system indication light comes on.

The aft outflow valve switch is a three position toggle switch. These are the three positions:

- CLOSE
- Neutral
- · OPEN.

The switch is spring-loaded to the neutral position.

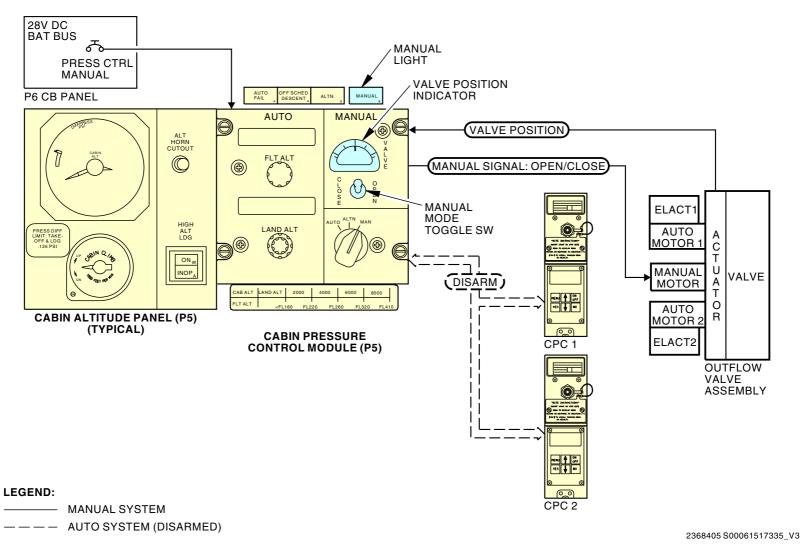
Signals from the outflow valve switch go to the manual motor on the aft outflow valve assembly. When the switch is in the CLOSE position, the motor closes the valve. When the switch is in the OPEN position, the motor opens the valve.

The position transducer on the aft outflow valve assembly gives valve position feedback to the outflow valve position indicator.

You can use these instruments and placards on the cabin altitude panel for reference during manual operation of the pressurization system:

· Cabin altitude and differential pressure indicator

- · Cabin rate of climb indicator
- · Pressure limitation placard
- Cabin/flight altitude conversion placard.


21-30-00

21-30-00-020

EFFECTIVITY

AIR CONDITIONING - PRESSURIZATION CONTROL - MANUAL MODE - GENERAL DESCRIPTION

AIR CONDITIONING - PRESSURIZATION CONTROL - MANUAL MODE - GENERAL DESCRIPTION

SIA ALL
D633AM102-SIA

21-30-00

21-30-00-020

AIR CONDITIONING - PRESSURIZATION CONTROL - MANUAL MODE - FUNCTIONAL DESCRIPTION

General

The pressurization outflow valve can operate in the manual mode. To do this, put the pressurization mode selector to the MANUAL position. The valve can then be opened or closed by the outflow valve switch. The pressurization mode selector and the outflow valve switch are on the cabin pressure control panel on the P5 overhead panel.

Functional Description

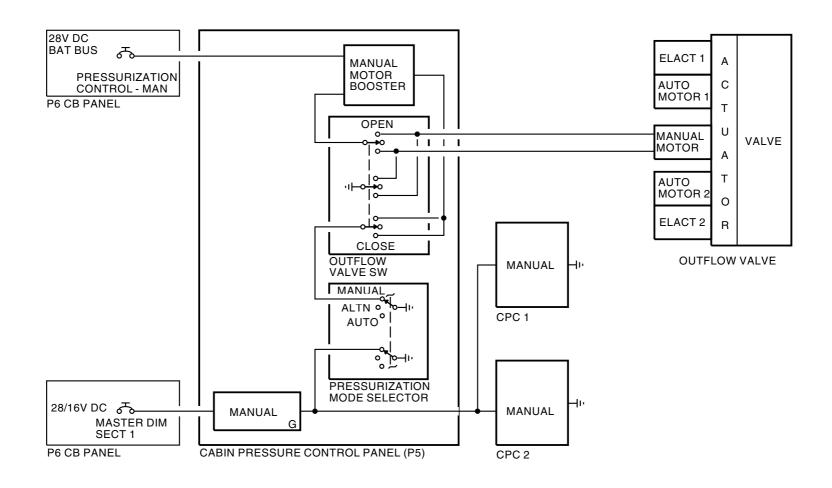
When the pressurization mode selector is in the MANUAL position, these things happen:

- The green MANUAL light comes on
- CPC 1 and CPC 2 stop automatic and alternate modes of valve operation.

When the outflow valve switch is in the open or close position, these things happen:

- The manual motor booster changes 28v dc to 48v dc for valve motor operation
- Power from the booster goes to the valve manual motor.

The direction of valve operation for the open/close functions is controlled by change of the power supply and return by the switch positions.


EFFECTIVITY

21-30-00

SIA ALL

AIR CONDITIONING - PRESSURIZATION CONTROL - MANUAL MODE - FUNCTIONAL DESCRIPTION

2368406 S00061517337_V1

AIR CONDITIONING - PRESSURIZATION CONTROL - MANUAL MODE - FUNCTIONAL DESCRIPTION

SIA ALL

D633AM102-SIA

ECCN 9E991 BOEING PROPRIETARY - See title page for details

21-30-00

Page 49 Sep 15/2022

AIR CONDITIONING - PRESSURIZATION CONTROL - POSITIVE PRESSURE RELIEF VALVE

Purpose

The positive pressure relief valves prevent over pressure damage to the airplane structure.

Location

There are two positive pressure relief valves. They are on the lower, aft airplane fuselage. One valve is on each side of the aft outflow valve.

General Description

The positive pressure relief valves are fail safe devices that bleed fuselage pressure overboard if the aft outflow valve fails closed.

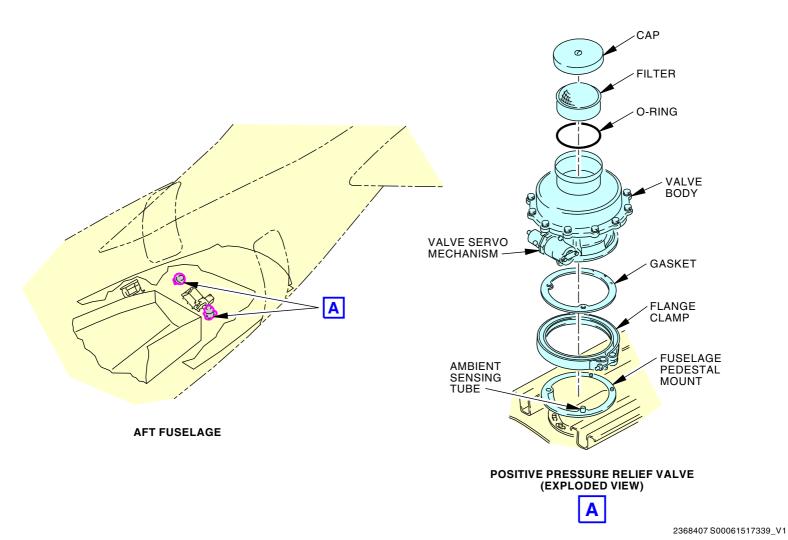
The positive pressure relief valves are mechanical devices and operate independently. They do not interface with other airplane pressurization systems and no crew action is necessary.

The positive pressure relief valves are pneumatically operated by cabin-to-ambient pressure differential. They control pressure to a nominal 8.95 + -0.15 psi more than ambient.

When the differential pressure is too high, the valve opens. The open valve lets air out of the airplane. This relieves the cabin pressure. When the cabin-to-ambient pressure is safe, the valve closes.

The positive pressure relief valves have filters. The filters clean the air used in the internal servo and actuator mechanisms.

They attach to pedestals with gaskets and flange clamps.


EFFECTIVITY

21-30-00

SIA ALL

AIR CONDITIONING - PRESSURIZATION CONTROL - POSITIVE PRESSURE RELIEF VALVE

AIR CONDITIONING - PRESSURIZATION CONTROL - POSITIVE PRESSURE RELIEF VALVE

21-30-00

SIA ALL

EFFECTIVITY

AIR CONDITIONING - PRESSURIZATION CONTROL - NEGATIVE PRESSURE RELIEF VALVE

Purpose

The negative pressure relief valve prevents negative differential pressure (vacuum pressure) damage to the airplane structure. This can prevent structure damage during a rapid descent.

Location

The negative pressure relief valve is on the lower aft fuselage, on the right side, near the aft service door.

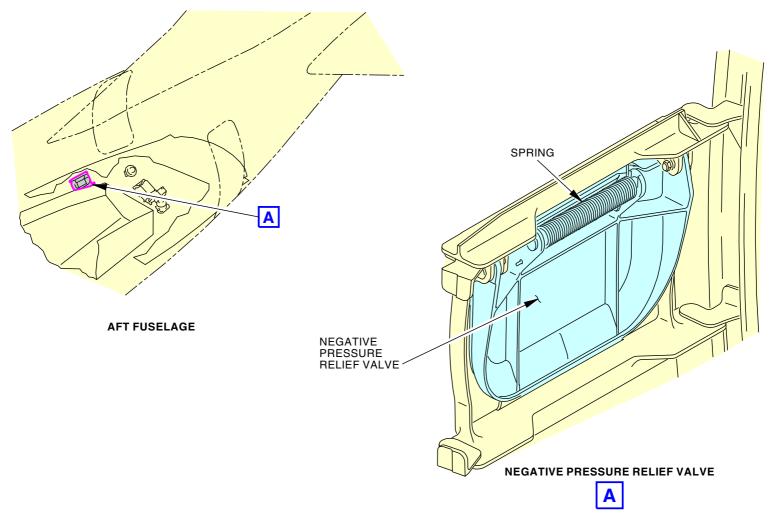
Access to the valve is from the aft cargo compartment.

General Description

The negative pressure relief valve is a mechanical device and operates independently. It does not interface with other airplane pressurization systems and requires no crew action.

The negative pressure relief valve is a flapper type valve. The valve hinges on its top edge and opens inward. A spring on its hinge pin holds the valve closed.

Negative differential cabin-to-ambient pressure opens the valve. The valve opens when pressure outside of the airplane is 1.0 psi more than the pressure inside of the airplane (-1.0psid).


EFFECTIVITY

21-30-00

SIA ALL

AIR CONDITIONING - PRESSURIZATION CONTROL - NEGATIVE PRESSURE RELIEF VALVE

2368408 S00061517341_V1

AIR CONDITIONING - PRESSURIZATION CONTROL - NEGATIVE PRESSURE RELIEF VALVE

SIA ALL

21-30-00

Page 53 Sep 15/2022

AIR CONDITIONING - PRESSURIZATION CONTROL - CARGO COMPARTMENT BLOWOUT PANEL

Purpose

The cargo compartment blowout panels prevent damage to the airplane structure during sudden decompression.

Physical Description

The ceiling blowout panel has these parts:

- Blowout panel
- Frame
- · Cap strip.

The bulkhead blowout panel has these parts:

- · Blowout panel
- Frame
- Cap strip
- · Grate.

Location

The cargo compartment blowout panels are in these places:

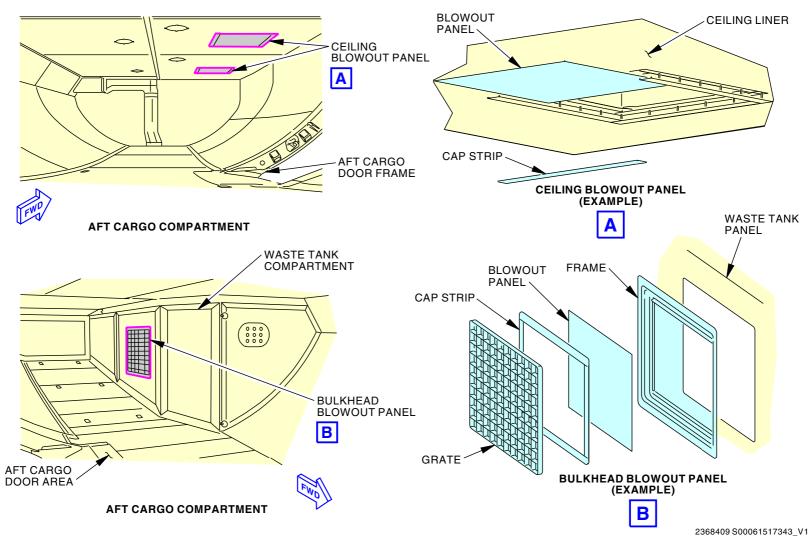
- · Cargo compartment ceilings
- Cargo compartment bulkheads.

Functional Description

During rapid decompression, differential pressure pushes the panels out of their frames. When the panels push out of their frames, the pressures in the upper and lower fuselage lobes equalize quickly. This equalization of pressure prevents damage to the airplane structure.

A differential pressure of 1.0 psid will push the blowout panel out of the frame.

The blowout panels on the cargo compartment bulkheads have grates. The grates do not let baggage hit the blowout panels.

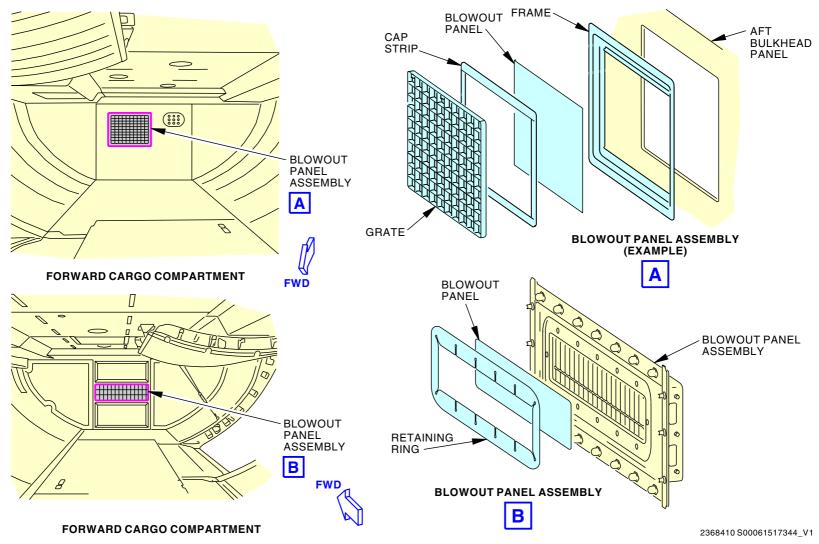

SIA ALL

21-30-00

AIR CONDITIONING - PRESSURIZATION CONTROL - CARGO COMPARTMENT BLOWOUT PANEL

AIR CONDITIONING - PRESSURIZATION CONTROL - CARGO COMPARTMENT BLOWOUT PANEL

SIA ALL


D633AM102-SIA

21-30-00

AIR CONDITIONING - PRESSURIZATION CONTROL - CARGO COMPARTMENT BLOWOUT PANEL

AIR CONDITIONING - PRESSURIZATION CONTROL - CARGO COMPARTMENT BLOWOUT PANEL

SIA ALL

21-30-00

Page 56 Sep 15/2022

THIS PAGE IS INTENTIONALLY LEFT BLANK

21-30-00

AIR CONDITIONING - PRESSURIZATION CONTROL - PRESSURE EQUALIZATION VALVE

Purpose

The pressure equalization valves allow air to flow into or out of the cargo compartments to keep the cargo compartment pressure the same as cabin pressure.

Physical Description

The cargo compartment pressure equalization valve has two swing check valves spring-loaded to the closed position. One valve hinges away from the cargo compartment and the other hinges to the cargo compartment.

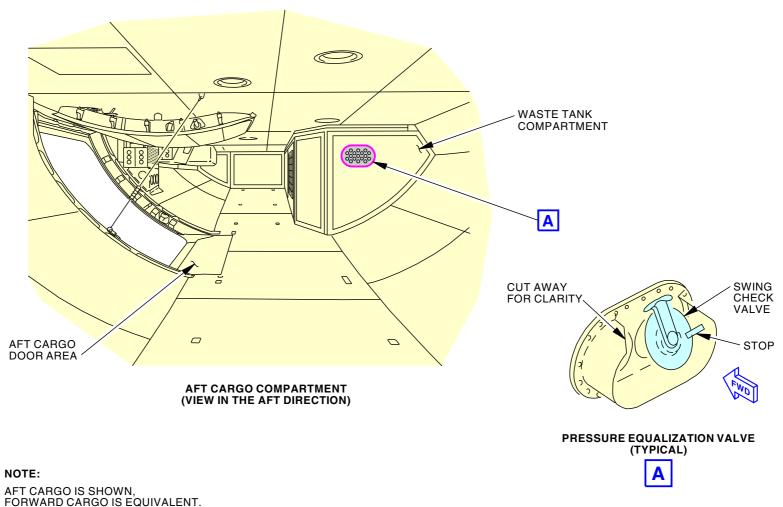
Location

The forward cargo compartment has a pressure equalization valve on the aft bulkhead.

The aft cargo compartment has a pressure equalization valve on the forward portion of the vacuum waste bulkhead.

Functional Description

One valve lets air into the cargo compartment during airplane pressurization and one valve lets air out of the cargo compartment during airplane depressurization.


EFFECTIVITY

21-30-00

SIA ALL

AIR CONDITIONING - PRESSURIZATION CONTROL - PRESSURE EQUALIZATION VALVE

ZOTVALLIVI.

2368411 S00061517346_V1

AIR CONDITIONING - PRESSURIZATION CONTROL - PRESSURE EQUALIZATION VALVE

EFFECTIVITY

21-30-00

SIA ALL

21-30-00-025

AIR CONDITIONING - PRESSURIZATION CONTROL - CABIN ALTITUDE WARNING SWITCH

Purpose

The cabin altitude warning switches, S128 and S1153, warn the flight crew when cabin altitude is critical. Two switches provide redundancy in the cabin altitude warning indication system if one of the switches fails.

Location

The cabin altitude warning switches, S128 and S1153, are on the ceiling in the forward EE compartment.

General Description

The cabin altitude warning switch S128 is an aneroid type pressure switch. When the cabin altitude gets to 10,000 feet above mean sea level, switch S128 closes.

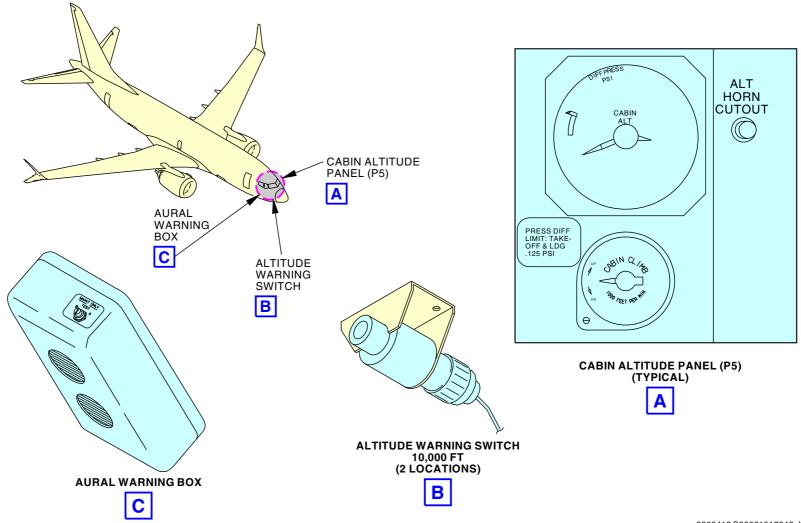
The cabin altitude warning switch S1153 is an aneroid type pressure switch. When the cabin altitude gets to 10,000 feet above mean sea level, switch S1153 closes.

The two switches make sure that if the cabin altitude reaches 10,000, a warning will alert the crew of the condition.

The cabin altitude warning switches S128 and S1153 are functionally identical but either switch may close anywhere between 9,000 and 11,000 feet of cabin altitude. The two switches provide an increased safety factor with their redundancy.

When energized, the cabin altitude warning circuit causes an intermittent beep from the aural warning unit.

The ALT HORN CUTOUT push-button switch lets the crew deactivate the warning alarm until the next high cabin altitude event.


EFFECTIVITY

21-30-00

SIA ALL

AIR CONDITIONING - PRESSURIZATION CONTROL - CABIN ALTITUDE WARNING SWITCH

2368412 S00061517348_V2

AIR CONDITIONING - PRESSURIZATION CONTROL - CABIN ALTITUDE WARNING SWITCH

SIA ALL

21-30-00

Page 61 Sep 15/2022

AIR CONDITIONING - PRESSURIZATION CONTROL - CABIN ALT WARNING SWITCH - FUNCTIONAL DESCRIPTION

Functional Description

Cabin altitude warning switches S128 and S1153 are functionally identical. The switches close when the cabin altitude is between 9,000 and 11,000 feet. Either one of the switches can close first or they can both close at the same cabin altitude. The two redundant switches ensure that the cabin altitude warning system will operate if one of the switches fails.

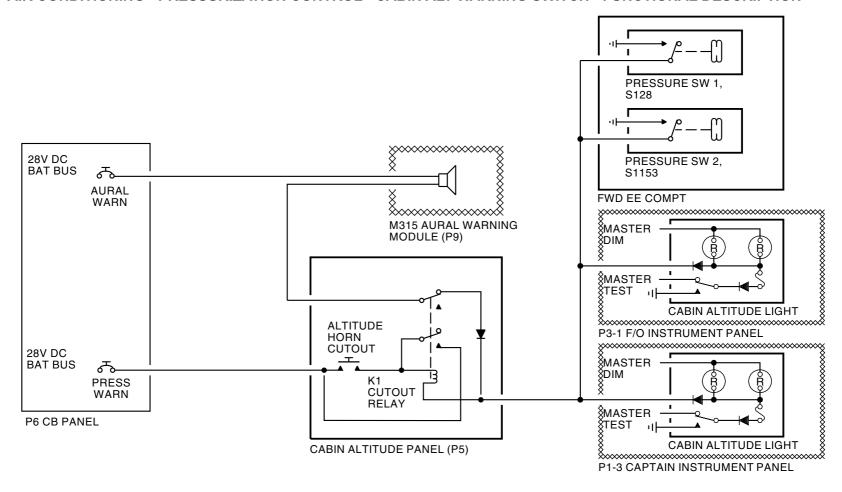
When the cabin altitude warning switch closes, these things occur:

- The switch grounds the horn circuit which energizes the system
- The aural warning module makes an intermittent beep alarm.
- The red CABIN ALTITUDE indicator lights on the captain's instrument panel P1-3 and the first officer's instrument panel P3-1 will come on.

When you push the ALT HORN CUTOUT switch on the cabin altitude panel, these things occur:

- K1 relay energizes
- The aural warning module horn goes off
- K1 latches through the pressure switch.

When the cabin altitude goes below 10,000 ft, the cabin altitude warning switch opens, and these things occur:


- K1 de-energizes
- The warning circuit is reset for the next event.
- The red CABIN ALTITUDE indicator lights on the captain's instrument panel P1-3 and the first officer's instrument panel P3-1 go off.

21-30-00

SIA ALL

AIR CONDITIONING - PRESSURIZATION CONTROL - CABIN ALT WARNING SWITCH - FUNCTIONAL DESCRIPTION

2368413 S00061517350_V1

AIR CONDITIONING - PRESSURIZATION CONTROL - CABIN ALTITUDE WARNING SWITCH - FUNCTIONAL DESCRIPTION

SIA ALL

D633AM102-SIA

ECCN 9E991 BOEING PROPRIETARY - See title page for details

21-30-00

THIS PAGE IS INTENTIONALLY LEFT BLANK

21-40-00

AIR CONDITIONING - HEATING - INTRODUCTION

Purpose

The heating system supplies warm air to areas to prevent freezing or to increase temperature for comfort.

General

These are the parts of the heating system:

- Forward cargo compartment heating
- · Supplemental heating
- · Aft cargo compartment heating.

Cargo Compartments

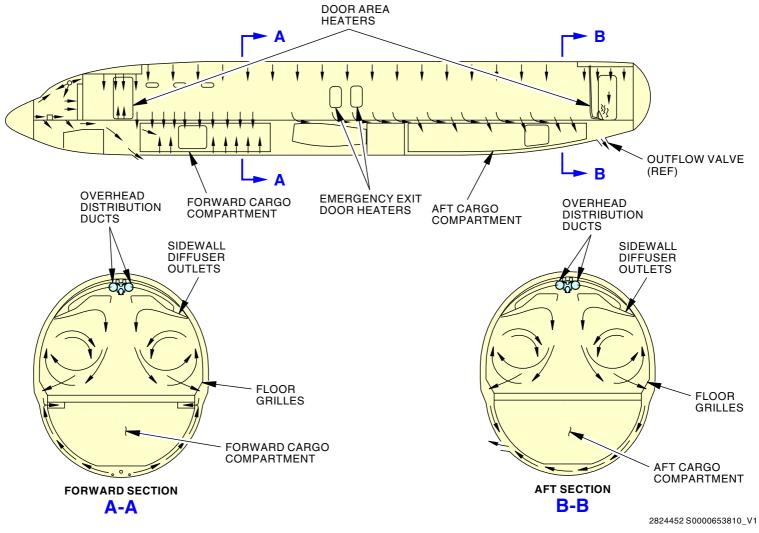
The cargo compartments receive heat from equipment cooling exhaust and passenger compartment air.

Warm equipment cooling exhaust air flows under the forward cargo compartment floor and along the sidewalls. The air mixes with passenger compartment air in the main distribution manifold.

The aft cargo compartment air comes from the passenger compartment through the foot level grilles. The air goes into the sidewall area around and under the aft cargo compartment through the outflow valve.

The warm air on all sides of the cargo compartments is an insulator. It prevents the transfer of heat through the skin by conduction.

Supplemental Heating


In the passenger compartment, door area heaters supply more heat around the two main entry doors. Also, heater blankets supply more heat around the emergency escape doors.

21-40-00

SIA ALL

AIR CONDITIONING - HEATING - INTRODUCTION

AIR CONDITIONING - HEATING - INTRODUCTION

SIA ALL

D633AM102-SIA

21-40-00

Page 3 Sep 15/2021

THIS PAGE IS INTENTIONALLY LEFT BLANK

21-43-00

737-7/8/8200/9/10 SYSTEM DESCRIPTION SECTION

OVERBOARD EXHAUST VALVE CONTROL - OVERBOARD EXHAUST VALVE

Purpose

The overboard exhaust valve has two functions. It controls the quantity of equipment cooling exhaust air that flows overboard and it operates in a smoke removal mode.

Location

The overboard exhaust valve is in the aft center section of the EE compartment. It is below the raised platform aft of the electronic equipment access door.

Physical Description

The four-inch diameter overboard exhaust valve has these physical features:

- · Valve body
- Electromechanical rotary actuator (electric motor, gear reduction train)
- Position indicator (NORMAL/SMOKE).
- Valve disk
- · Damper housing (silicone oil filled).

It attaches to the overboard exhaust duct by V-band clamps.

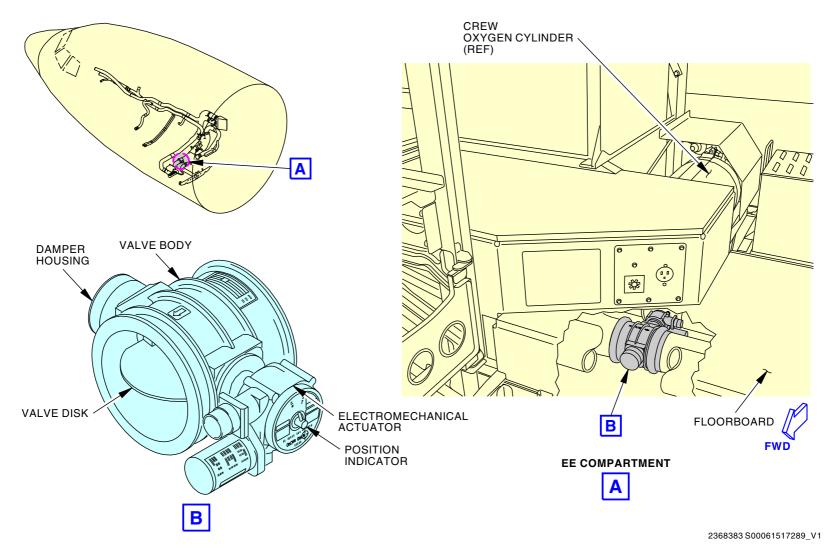
Mechanical Functional Description

EFFECTIVITY

The overboard exhaust valve is an aerodynamically controlled shutoff valve. A 28v dc actuator overrides the aerodynamic control. The actuator has two positions, NORMAL and SMOKE.

When the actuator is in the NORMAL position, the valve disk can turn from full open to full closed. When the actuator is in the SMOKE position, the valve disk can turn from full open to not fully open (54 degrees).

Spring force opens the valve. When the airplane starts to pressurize, airflow through the valve increases. The valve closes when the airflow through the valve is more than 30 lbs/min (14 kg/min). When the valve is closed, 1 psi differential pressure keeps the valve closed.


When the valve is open, the equipment cooling exhaust air flows overboard. When the valve is closed, the equipment cooling exhaust air flows under the forward cargo compartment floor and heats the forward cargo compartment.

The damper put a limit on the rate of valve disk movement.

21-43-00

OVERBOARD EXHAUST VALVE CONTROL - OVERBOARD EXHAUST VALVE

AIR CONDITIONING - EQUIPMENT COOLING SYSTEM - OVERBOARD EXHAUST VALVE

21-43-00

21-43-00-001

SIA ALL

EFFECTIVITY

THIS PAGE IS INTENTIONALLY LEFT BLANK

21-45-00

AIR CONDITIONING - SUPPLEMENTAL HEATING - DOOR AREA HEATER

Purpose

The door area heaters supply added heat to prevent cold zones around the doors.

Location

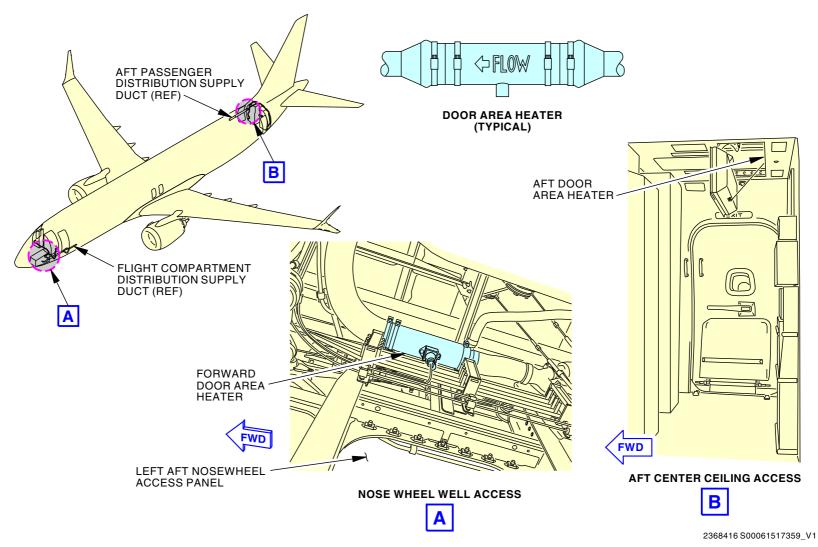
The forward door area heater is on the left outboard side of the nose wheel well. Remove the aft left access panel from inside the nose wheel well to get access to the heater.

The aft door area heater is located above the aft entry light assembly. It is necessary to lower aft side of the light assembly to get access to the heater.

Physical Description

The door area heaters are electrical heat elements in a cylindrical housing. There is an electrical connector on the housing. Flexible hoses connect conditioned air distribution supply ducts to the door area heaters. A flexible hose connects the outlet side of the heater to a fitting at the base of the door.

The forward door heater uses conditioned air from the flight compartment distribution supply.


EFFECTIVITY

21-45-00

SIA ALL

AIR CONDITIONING - SUPPLEMENTAL HEATING - DOOR AREA HEATER

AIR CONDITIONING - SUPPLEMENTAL HEATING - FORWARD AND AFT DOOR AREA HEATERS

SIA ALL EFFECTIVITY 21-45-00

Page 3 Sep 15/2021

AIR CONDITIONING - SUPPLEMENTAL HEATING - EMERGENCY ESCAPE DOOR - HEATER BLANKETS

Purpose

Additional heating is necessary in the emergency escape door areas. Electric heater blankets provide this additional heating.

Location

The blankets are behind the decorative trim around each door.

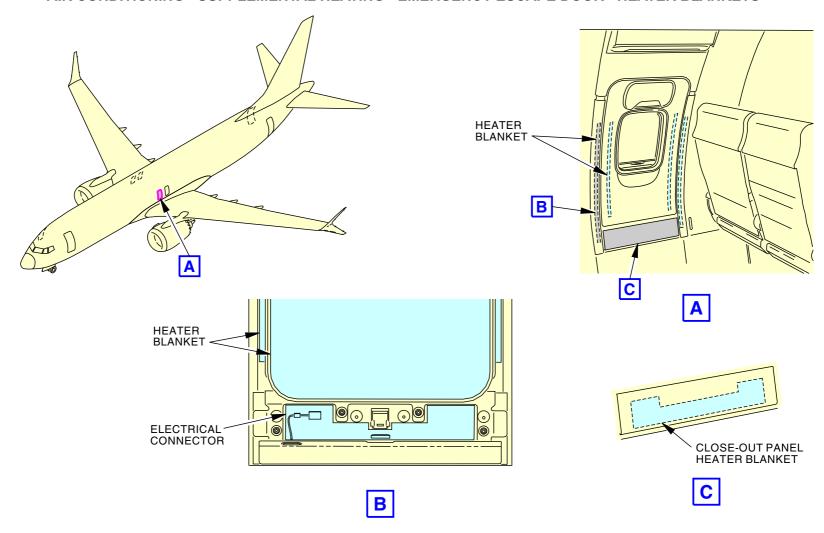
Emergency Escape Door Heater Blankets

The emergency escape doors are heated with heater blankets behind the lining, door trim, and close out panels.

There are two types of emergency escape door heater blankets:

- 10 watts (one heater blanket)
- 50 watts (four heater blankets).

The 10 watt close-out panel heater blanket is behind the lining below the escape door. The 50 watt heater blankets are behind the escape door lining and door trim.


21-45-00

SIA ALL

AIR CONDITIONING - SUPPLEMENTAL HEATING - EMERGENCY ESCAPE DOOR - HEATER BLANKETS

2368417 S00061517361_V1

AIR CONDITIONING - SUPPLEMENTAL HEATING - EMERGENCY ESCAPE DOOR - HEATER BLANKETS

SIA ALL

21-45-00

Page 5 Sep 15/2021

AIR CONDITIONING - SUPPLEMENTAL HEATING - FUNCTIONAL DESCRIPTION

General

The air conditioning system controls operation of the door area heaters.

The logic for the door area heaters comes from the air/ground system and air conditioning pack valve operation.

Functional Description

The fwd and aft door area heater power relay (R560) controls power to the area heaters. When the airplane is in the air and one of the pack flow control and shutoff valves is open, the relay energizes. When the relay energizes, 115v ac power from main bus 1 goes to the heaters.

Door Area Heaters

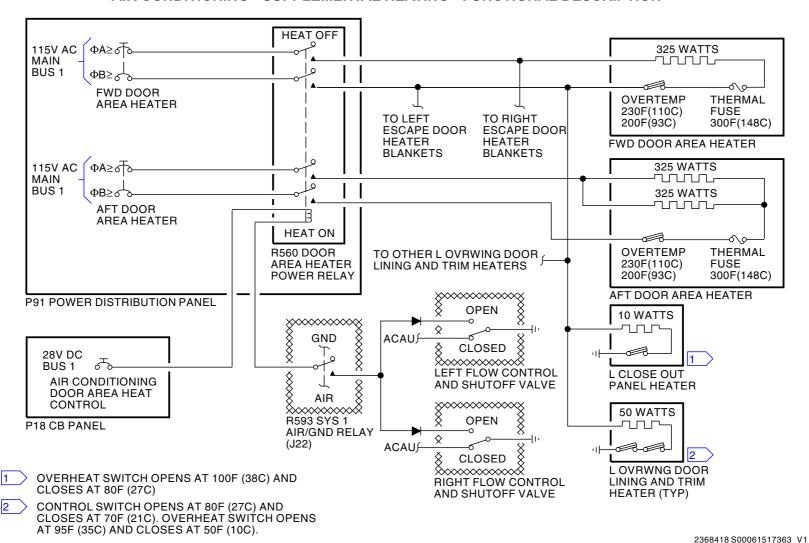
The door area heaters use phase-to-phase power. Each heat element uses 325 watts. There are internal temperature control components that keep the temperature to a limit. The overheat switch opens at 230°F (110°C) and closes at 200°F (93°C). The thermal fuse opens at 300°F (148°C).

Overwing Emergency Exit Door Heaters

The overwing emergency exit doors are heated with heaters behind the lining, door trim, and close out panels.

The close out panel heater uses 10 watts. An overheat switch keeps the temperature to a limit. The overheat switch opens at $100^{\circ}F$ (38°C) and closes at $80^{\circ}F$ (27°C).

The door lining and trim heaters use 50 watts. There are internal temperature control components that keep the temperature to a limit. The temperature control switch opens at 80°F (27°C) and closes at 70°F (21°C). The overheat switch opens at 95°F (35°C) and closes at 50°F (10°C).


EFFECTIVITY

21-45-00

SIA ALL

AIR CONDITIONING - SUPPLEMENTAL HEATING - FUNCTIONAL DESCRIPTION

AIR CONDITIONING - SUPPLEMENTAL HEATING - FUNCTIONAL DESCRIPTION

21-45-00

SIA ALL
D633AM102-SIA

Page 7 Sep 15/2021

THIS PAGE IS INTENTIONALLY LEFT BLANK

21-50-00

21-50-00

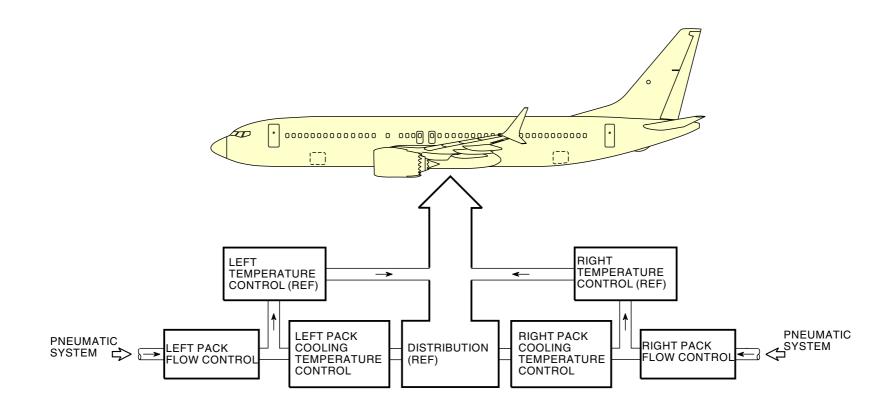
AIR CONDITIONING - COOLING - INTRODUCTION

Purpose

These are functions of the cooling system:

- Control the quantity of air from the pneumatic system to the pack
- Remove heat from the air that enters the pack
- Control the output temperature and moisture of the pack.

Abbreviations and Acronyms


- A/C air conditioning
- · ACM air cycle machine
- · ACAU air conditioning accessory unit
- APU auxiliary power unit
- C celsius
- F fahrenheit
- · FCSOV flow control and shutoff valve
- FMCS flight management computer system
- gnd ground
- HPWS high pressure water separator
- OVHT overheat
- · SRADA smart ram air door actuator
- sw switch
- · vlv valve

EFFECTIVITY

SIA ALL

AIR CONDITIONING - COOLING - INTRODUCTION

2368419 S00061517367_V1

AIR CONDITIONING - COOLING - INTRODUCTION

D633AM102-SIA

ECCN 9E991 BOEING PROPRIETARY - See title page for details

21-50-00

Page 3 Sep 15/2021

SIA ALL

EFFECTIVITY

AIR CONDITIONING - COOLING - GENERAL DESCRIPTION

General

The cooling system uses these components and systems to cool the bleed air:

- · Air conditioning/bleed air controls panel
- · Flow control and shutoff valve
- Heat exchangers (2)
- · Air cycle machine
- Reheater
- Condenser
- Ram air system
- · Water extraction.

Air Conditioning/Bleed Air Controls Panel

The air conditioning/bleed air controls panel gives control and indications of the cooling system. These are the controls and indications of the cooling system:

- L/R PACK switches
- PACK lights
- TRIP RESET button.

Flow Control and Shutoff Valve

EFFECTIVITY

Bleed air from the pneumatic system supplies bleed air to the flow control and shutoff valve. The valve controls the flow of bleed air into the pack. After the bleed air goes through the flow control and shutoff valve it enters the primary heat exchanger.

Primary Heat Exchanger

The primary heat exchanger receives bleed air from the flow control and shutoff valve. As the bleed air goes through the heat exchanger, ram air removes heat. The cooled bleed air goes to the compressor section of the air cycle machine.

Air Cycle Machine

The air cycle machine is a three wheel, air bearing air cycle machine.

Cooled bleed air from the primary heat exchanger enters the air cycle machine where it is compressed. The compressed air then goes to a secondary heat exchanger, a water separator system and then back to the air cycle machine where the bleed air is rapidly expanded and sent to a condenser.

Secondary Heat Exchanger

The secondary heat exchanger receives compressed air from the air cycle machine. As the air goes through the heat exchanger, ram air removes heat. After the compressed air is cooled it goes through a water extractor duct and back to the air cycle machine.

Reheater

The reheater increases the temperature of the air in the air conditioning pack before it enters the turbine of the air cycle machine.

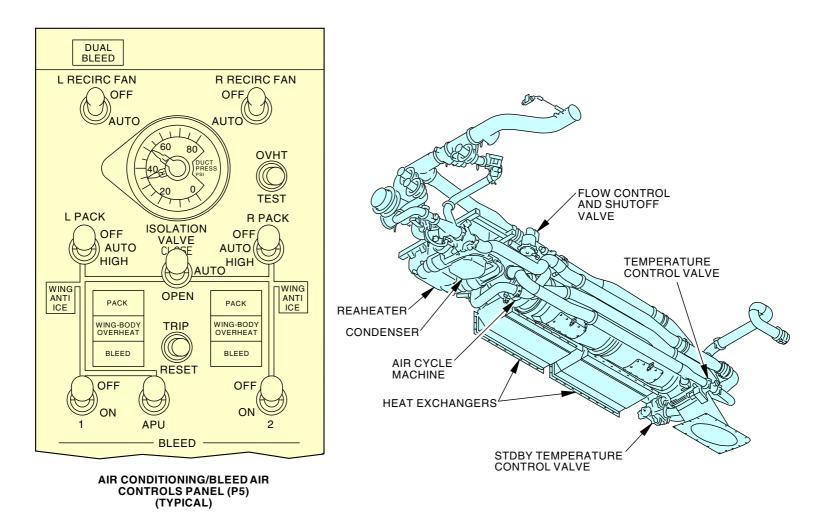
Condenser

The condenser decreases the temperature of the air in the air conditioning pack to below the dew point, changing water vapor into liquid.

Ram Air System

The ram air system controls the quantity of outside ambient air that flows through the heat exchangers.

Water Extraction


The water extraction collects and removes moisture from the air before it goes into the distribution system.

21-50-00

SIA ALL

AIR CONDITIONING - COOLING - GENERAL DESCRIPTION

2368420 S00061517369_V2

AIR CONDITIONING - COOLING - GENERAL DESCRIPTION

SIA ALL EFFECTIVITY 21-50-00

AIR CONDITIONING - COOLING - COMPONENT LOCATION

Component Locations

The air conditioning cooling system components are in these areas of the airplane:

- Flight compartment
- EE compartment
- · Distribution compartment
- · Air conditioning compartment and wing-to-body fairing.

Flight Compartment

The air conditioning/bleed air controls panel is on the P5 overhead panel.

EE Compartment

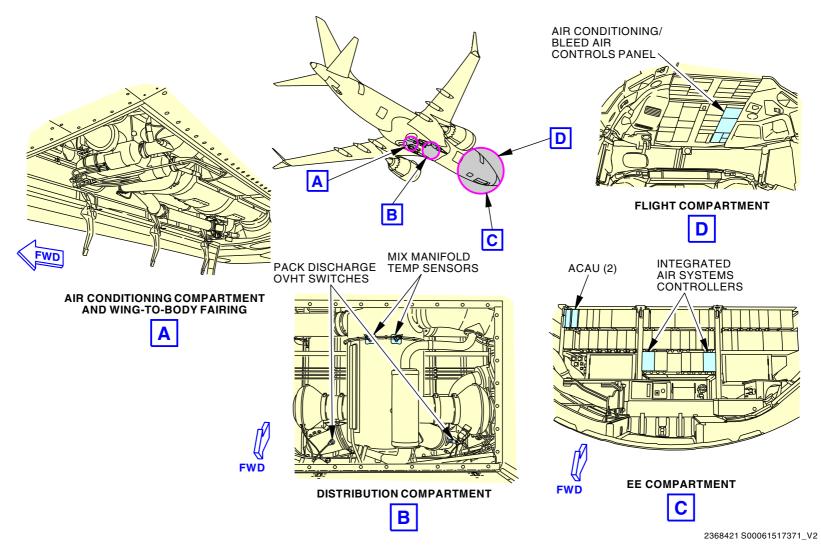
The air conditioning accessory units (ACAUs) are on the E4-1 shelf.

Distribution Compartment

The mix manifold temperature sensors and pack discharge overheat switches are in the distribution compartment.

Air Conditioning Compartment and Wing-to-Body Fairing

The air conditioning pack systems are in the air conditioning compartments. The ram air system is in the wing-to-body fairing. This is the area forward and outboard of the air conditioning compartment.


EFFECTIVITY

21-50-00

SIA ALL

AIR CONDITIONING - COOLING - COMPONENT LOCATION

AIR CONDITIONING - COOLING - COMPONENT LOCATION

21-50-00

21-50-00-003

SIA ALL

EFFECTIVITY

AIR CONDITIONING - COOLING - AIR CONDITIONING ACCESSORY UNITS

Purpose

The air conditioning accessory unit (ACAU) is the interface of the airplane operational logic and the air systems.

Location

The ACAUs are in the EE compartment on the E4-1 shelf.

Interfaces

The air conditioning accessory unit has an interface with these systems:

- Flight controls (flaps not up switch)
- Landing gear (air/ground)
- · Engine starting
- · Air conditioning
- · Pneumatic/bleed air
- Flight management computer (FMC).

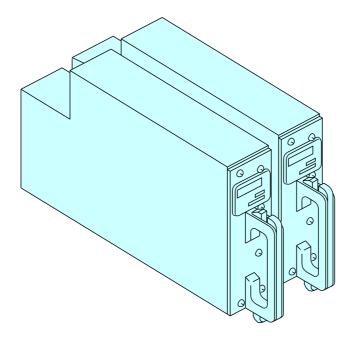
The ACAU receives signals from these airplane components:

- Engine start valves
- Flap control unit
- Flap up switch
- · Air/Gnd relays
- · Pack flow control and shutoff valve
- · Ram air actuators
- · Pack overheat switches
- Integrated air systems controller
- Engine bleed switches
- · Duct overheat switches
- Pneumatic system valves
- Air conditioning/bleed air controls panel
- Cabin temperature panel

EFFECTIVITY

- · Pressurization outflow valve
- Recirculation fans
- · Overboard exhaust valve
- Pneumatic system ovht/ovpress switches
- FMC.

The ACAU sends signals to these components:


- · Air conditioning/bleed air controls panel
- · Cabin temperature panel
- Bleed air regulators
- · Engine start valves
- · Pack flow control and shutoff valves
- · Ram air actuators
- · Outflow valve
- · Recirculation fans
- · EE cooling fans
- FMC.

21-50-00

21-50-00-004

AIR CONDITIONING - COOLING - AIR CONDITIONING ACCESSORY UNITS

2368422 S00061517373_V1

AIR CONDITIONING - COOLING - AIR CONDITIONING ACCESSORY UNITS

SIA ALL

21-50-00-004

21-50-00

AIR CONDITIONING - COOLING - FLOW CONTROL AND SHUTOFF VALVE

Purpose

The flow control and shutoff valve (FCSOV) controls the airflow to the pack.

Location

The FCSOV is in the air conditioning compartment. It is adjacent to the keel beam and air cycle machine.

Physical Description

The FCSOV has these:

- Actuator
- Visual position indicator
- Control servo
- Filter
- · Pressure regulator
- · Latching solenoid (open-close)
- Torque motor
- Butterfly valve
- Air lines
- Electrical connection (3).

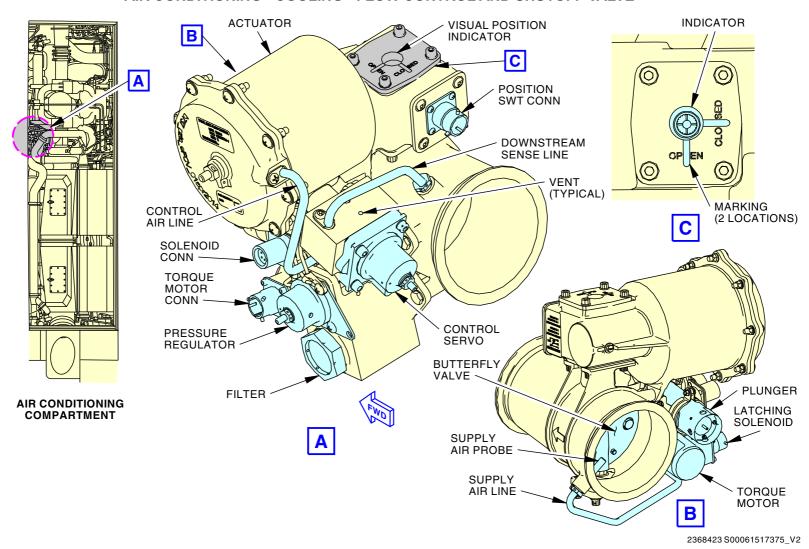
EFFECTIVITY

General Description

The FCSOV is electrically-controlled and pneumatically-actuated. It is spring-loaded to the closed position. The latching solenoid controls the valve. The control servo and torque motor control the airflow.

Supply air goes into the supply air probe. The air goes through the filter and supply air line to the pressure regulator. The regulator sends control air to the torque motor and the latching solenoid. When the solenoid is in the open position, control air goes through the control air line to the actuator. The actuator moves the butterfly valve open.

Air goes through the downstream sense line to the control servo. The servo lets control air vent from the actuator when necessary to control the airflow through the FCSOV.


When the torque motor operates, control air goes to the control servo. The servo lets more air vent from the actuator and the airflow through the FCSOV decreases.

The visual position indicator has a window (fused quartz disk) that lets you see the indicator. The indicator aligns with the markings to show the position of the butterfly valve.

The latching solenoid has a plunger that lets you manually operate the solenoid.

21-50-00

AIR CONDITIONING - COOLING - FLOW CONTROL AND SHUTOFF VALVE

AIR CONDITIONING - COOLING - FLOW CONTROL AND SHUTOFF VALVE

21-50-00

21-50-00-005

SIA ALL

EFFECTIVITY

THIS PAGE IS INTENTIONALLY LEFT BLANK

21-50-00

AIR CONDITIONING - COOLING - FLOW CONTROL AND SHUTOFF VALVE - MECHANICAL FUNCTIONAL DESCRIPTION

General

The flow control and shutoff valve (FCSOV) is electrically-controlled and pneumatically-actuated. It is spring-loaded to the closed position. The valve operates by an actuator which moves a butterfly valve. When the PACK switch is in the OFF position, 28v dc energizes the latching solenoid valve to the closed position. The solenoid valve ball stops air pressure to the actuator. It also vents the actuator open pressure.

Functional Description

Pressurized air from the pneumatic manifold goes in the inlet of the valve. The closed butterfly valve prevents airflow through the valve. The pressurized air goes into the supply air probe. The supply air pressure goes through a filter to the inlet of the pressure regulator. Air flows through the inlet of the regulator, around the poppet, and to the outlet of the regulator. Air also flows into the sensing chamber where it gives a force on the diaphragm.

The diaphragm moves the poppet in the closed position direction. The close force is opposite to the spring force that opens the poppet. When the close force is more than the open force, the poppet moves in the closed position direction. This decreases the flow through the regulator. The force balance between the close force and the open force senses a change in pressure downstream of the regulator. The change causes the poppet to move in the direction to make the force balance normal. This causes pressure downstream of the pressure regulator to be constant.

Control pressure from the regulator goes:

- · To a vent orifice
- Through a control orifice to the inlet of the solenoid valve
- To the supply nozzle of the torque motor.

Pressure Control

To open the valve, the open coil of the solenoid energizes. The torque motor stays de-energized. The latching solenoid valve ball moves from the supply seat to the vent seat. With the ball against the vent seat, the ambient vent in the solenoid is blocked. Control pressure goes to the actuator opening chamber and the control servo poppet. Control pressure gives an open force to the actuator. This force is more than the close force of the actuator spring and the butterfly valve opens. Inlet air flows downstream.

The downstream sense probe lets air pressure go through the downstream sense line to the feedback chamber of the control servo. When the pressure on the feedback diaphragm is more than the spring force, the poppet moves to open a vent. This gives a pressure drop across the control orifice and decreases the control pressure in the actuator opening chamber. When the force balance in the control servo senses a change in downstream pressure, the poppet moves to make the force balance normal. This lets the valve control downstream pressure.

When the valve operates in the pneumatic control mode (zero torque motor current), the valve controls airflow to 42-70 psig with inlet pressures 50-194 psig.

Torque Motor Control

To control downstream pressure to a lower value, operation is the same as described in pressure control except current goes to the torque motor. When the current to the torque motor increases, the flapper moves away from the supply nozzle to the vent nozzle. This increases the pressure in the reset chamber of the control servo. When the pressure on the reset diaphragm increases, the force increases the open force balance set point in the control servo. This lets more actuator open pressure out of the vent. The pressure downstream of the butterfly valve decreases. This causes the valve downstream pressure to be a function of how much electrical current goes to the torque motor.

EFFECTIVITY

21-50-00

SIA ALL

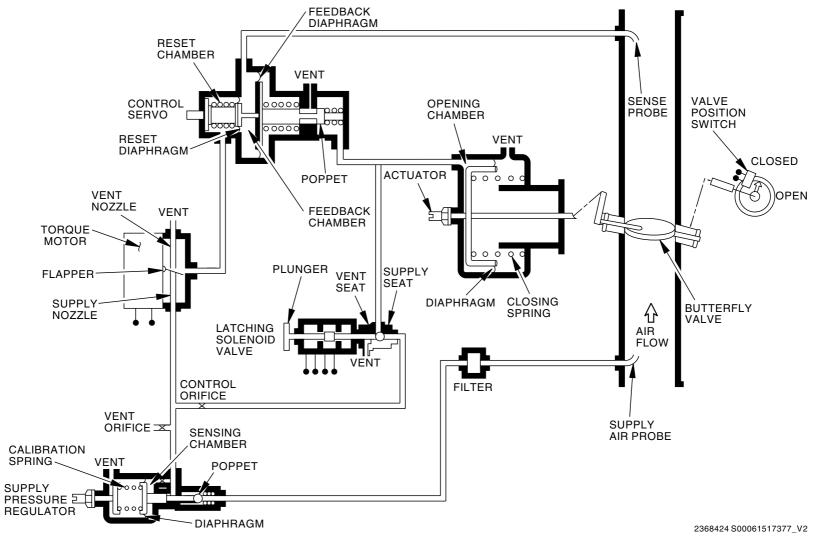
AIR CONDITIONING - COOLING - FLOW CONTROL AND SHUTOFF VALVE - MECHANICAL FUNCTIONAL DESCRIPTION

Close the Valve

To close the valve, the solenoid close coil energizes. The solenoid ball moves to the supply seat. This stops the control air to the actuator and vents the open pressure in the actuator. The actuator spring moves the valve to the closed position.

Training Information Point

A plunger on the latching solenoid valve lets you manually latch the solenoid in the closed position. This lets you manually close the FCSOV and give a pneumatic lockout.


The valve has a valve position switch for valve closed or not closed signals to airplane systems.

21-50-00

SIA ALL

AIR CONDITIONING - COOLING - FLOW CONTROL AND SHUTOFF VALVE - MECHANICAL FUNCTIONAL DESCRIPTION

AIR CONDITIONING - COOLING - FLOW CONTROL AND SHUTOFF VALVE - MECHANICAL FUNCTIONAL DESCRIPTION

SIA ALL EFFECTIVITY

D633AM102-SIA

Page 15 Sep 15/2021

THIS PAGE IS INTENTIONALLY LEFT BLANK

21-50-00

BOEING

737-7/8/8200/9/10 SYSTEM DESCRIPTION SECTION

AIR CONDITIONING - COOLING - FLOW CONTROL AND SHUTOFF VALVE - ELECTRICAL FUNCTIONAL DESCRIPTION

General

The PACK switch controls the flow control and shutoff valve (FCSOV). The engine and APU BLEED switches affect operation of the FCSOV.

The pack inlet pressure sensor and the pack flow sensor send signals to the integrated air systems controller (IASC). The IASC uses the signals to control the airflow through the FCSOV.

Pack Switch OFF

When the PACK switch is in the OFF position, 28v dc energizes the solenoid close coil. When the close coil energizes, the FCSOV closes. Also, the IASC sends a close signal to the torque motor.

Pack Switch AUTO

When the PACK switch is in the AUTO position, 28v dc goes through the K8 pack overheat relay and energizes the solenoid open coil. When the open coil energizes, the FCSOV opens (when there is pneumatic manifold pressure). This also moves the valve position switch to the not closed position. The position switch gives a discrete signal to these:

- · Integrated air systems controller
- · Recirculation system
- Temperature control system
- Supplemental heating system
- Pressurization system
- Nitrogen generation system (NGS) (left FCSOV only)
- Flight management computer system (FMCS)
- MAX display system (MDS).

EFFECTIVITY

The K18 flow mode relay normally is de-energized. A low flow mode signal goes through a PACK switch contact to the IASC. The IASC controls the torque motor for the FCSOV to give a low flow output. When K18 energizes, the IASC controls the FCSOV to give a high flow output.

The K18 relay energizes for one of these conditions:

- The two engine bleed switches in the OFF position (no-bleed takeoff)
- R1184 energizes because of smoke detection in the equipment cooling system. When R1184 energizes, the K18 relay in the right ACAU for the right pack also energizes. See the equipment cooling smoke detection section for more information (ATA 26-19).

Also, when R1184 energizes, these occur:

- The K18 relay in the right ACAU for the right pack also energizes
- When the R644 recirculation fan switch bypass relay is in the normal position (pressurized flight), the K16 relays energize (the two recirculation fans stop operation). See the recirculation system section for more information about the K16 relays (ATA 21-25).

K18 also energizes when all these conditions occur:

- Flaps up (the K19 flap not up relay in up position)
- Airplane in the air (the K10 pack air/ground relay in the air position)
- · The other FCSOV closes.

Pack Switch HIGH

When the PACK switch is in the HIGH position, the low flow mode signal to the IASC stops. The IASC controls the FCSOV to give a high flow output.

The ISAC controls the FCSOV to give an APU high flow output when all of these occur:

- APU electronic control unit gives 28v dc when APU operates >95% (ready-to-load)
- Airplane is on the ground (R595 ground sense relay in the gnd position)
- · PACK switch is in the HIGH position
- APU BLEED switch is in the ON position.

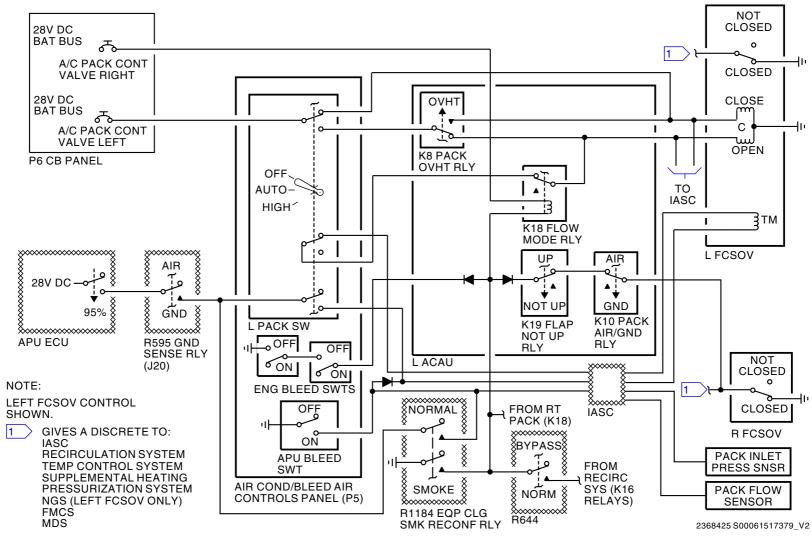
21-50-00

21-50-00-007

AIR CONDITIONING - COOLING - FLOW CONTROL AND SHUTOFF VALVE - ELECTRICAL FUNCTIONAL DESCRIPTION

Overheat Condition

When an overheat condition occurs, the K8 pack overheat relay energizes. Power goes to the solenoid close coil and the valve closes.


The K8 relay sends open and close power to the open and close coils of the solenoid. The power also goes to the IASC. The IASC uses the power as signals to operate the torque motor.

21-50-00

SIA ALL

AIR CONDITIONING - COOLING - FLOW CONTROL AND SHUTOFF VALVE - ELECTRICAL FUNCTIONAL DESCRIPTION

AIR CONDITIONING - COOLING - FLOW CONTROL AND SHUTOFF VALVE - ELECTRICAL FUNCTIONAL DESCRIPTION

SIA ALL D633AM102-SIA

Page 19 Sep 15/2021

AIR CONDITIONING - COOLING - PRIMARY HEAT EXCHANGER AND PLENUM/DIFFUSER ASSEMBLY

Purpose

The primary heat exchanger (HX) removes heat from bleed air going to the compressor section of the air cycle machine (ACM).

The primary plenum/diffuser lets ram air flow through the primary heat exchanger and out the ram air exhaust.

Location

The primary heat exchanger and plenum/diffuser are in the aft, outboard section of the air conditioning compartment.

Physical Description

The primary heat exchanger is an air-to-air, plate-fin, cross-flow type heat exchanger. Two isolated airstreams flow through thin walled channels. The channel walls are made up of plates and fins that increase surface area.

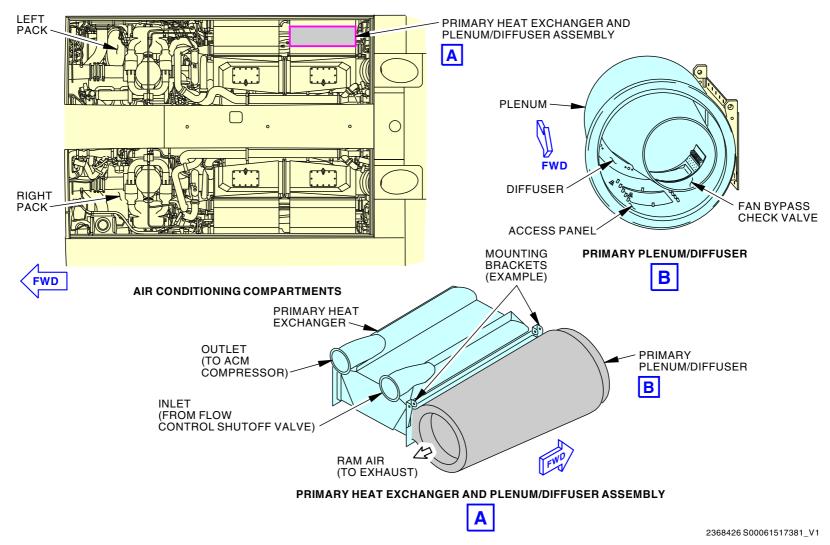
The primary plenum/diffuser has an outer duct and an inner duct. The outer duct is the plenum and the inner duct is the diffuser. The inner duct has a fan bypass check valve. The fan bypass check valve is a hinged door assembly in the lower aft section of the diffuser.

Functional Description

Air from the FCSOV flows through the primary heat exchanger. A cross flow of ram air removes heat before the air enters the ACM compressor inlet.

When the airplane is on the ground, the ACM impeller fan makes a low pressure zone. This pulls air through the heat exchangers and up through the plenum to the impeller fan. Then the impeller fan sends the air through the diffuser and out the ram air exhaust. The air pressure in the diffuser keeps the check valve closed.

When the airplane is in flight, ram air pressure opens the fan bypass check valve.


EFFECTIVITY

21-50-00

SIA ALL

AIR CONDITIONING - COOLING - PRIMARY HEAT EXCHANGER AND PLENUM/DIFFUSER ASSEMBLY

AIR CONDITIONING - COOLING - PRIMARY HEAT EXCHANGER AND PLENUM/DIFFUSER ASSEMBLY

SIA ALL EFFECTIVITY 21-50-00

Page 21 Sep 15/2021

AIR CONDITIONING - COOLING - HEAT EXCHANGER TEMPERATURE SENSOR

Purpose

The heat exchanger temperature sensor supplies the primary heat exchanger outlet temperature to the integrated air system controller.

Location

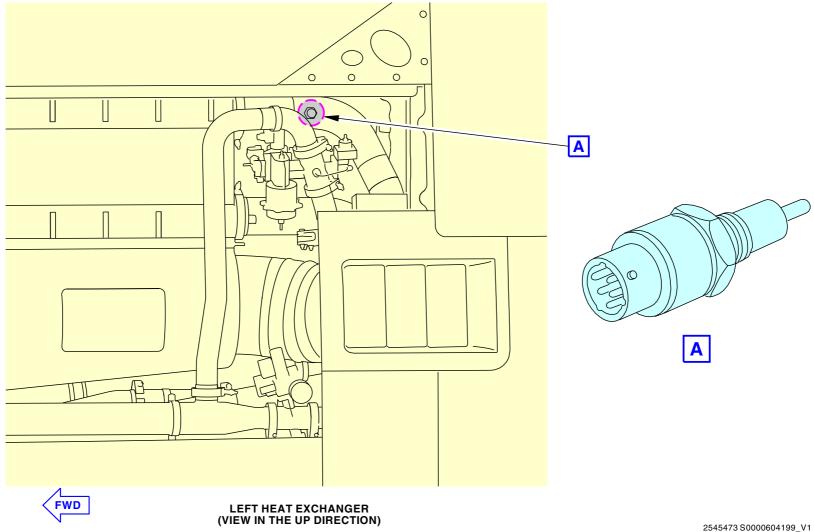
The heat exchanger temperature sensor is in the air conditioning compartment. It is in the duct that connects the compressor section of the ACM to the primary heat exchanger.

Physical Description

The heat exchanger temperature sensor has a stainless steel probe housing. The probe housing attaches to the electrical connector and is hermetically sealed.

Functional Description

The heat exchanger temperature sensor is a thermistor bead element. The resistance of the temperature sensing element changes as the air temperature changes.


The Integrated Air System Controller (IASC) will monitor the temperature of each primary heat exchanger outlet air and provide trend monitoring data to flight deck MAX Display System (MDS) and to the Digital Flight Data Acquisition Unit (DFDAU).

EFFECTIVITY 21-50-00

SIA ALL

AIR CONDITIONING - COOLING - HEAT EXCHANGER TEMPERATURE SENSOR

AIR CONDITIONING - COOLING - HEAT EXCHANGER TEMPERATURE SENSOR

SIA ALL

21-50-00-034

EFFECTIVITY

21-50-00

AIR CONDITIONING - COOLING - RAM AIR DUCTS

Purpose

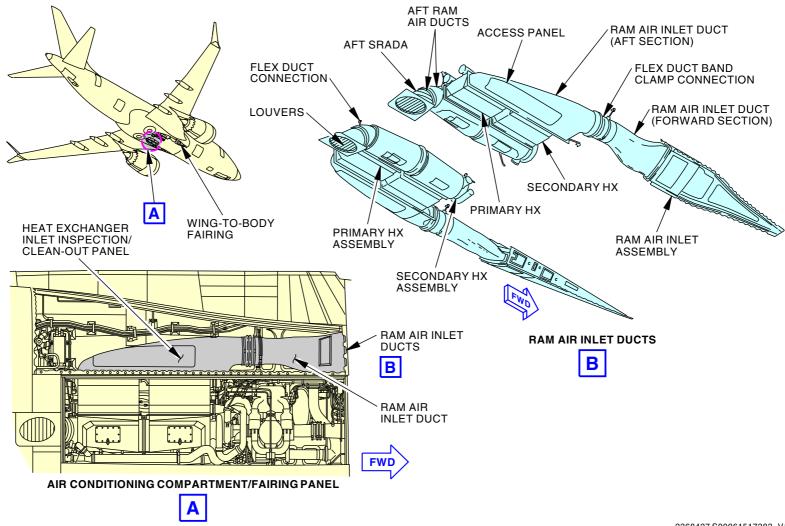
The ram air inlet ducts let cooling air flow from the ram air inlet to the heat exchangers. The ram air exhaust ducts let air flow from the heat exchangers discharge overboard.

Location

The ram air inlet ducts are outboard of the air conditioning compartment. They extend forward to the ram air inlet in the wing-to-body fairing.

The ram air exhaust ducts are aft of the air conditioning compartments. You get access to the exhaust ducts from the air conditioning compartment.

Physical Description


There are two ram air ducts, forward inlet and aft exhaust. The forward duct is made of fiberglass reinforced polymer, the aft duct is made of kevlar. The forward section of the inlet ducts attach to the airplane structure at the forward part of the ram air inlet. They attach to the aft section with a flex duct and band clamps. There are tie-rods that attach the ducts to the structure at the center connection of the forward and aft ducts. The aft duct has a flange connection to a web on the outboard side of the heat exchangers. An inspection door is in the aft inlet duct at the aft end. The ram air exhaust ducts attach to the aft end of the pack primary plenum/diffuser. They attach to the airplane structure at their aft end with a flex duct and band clamps. Each ram air exhaust duct incorporates a smart ram air door actuator (SRADA), associated linkage and three louvers to modulate the ram air exhaust flow in concert with the ram air inlet panels.

EFFECTIVITY

21-50-00

SIA ALL

AIR CONDITIONING - COOLING - RAM AIR DUCTS

2368427 S00061517383_V1

AIR CONDITIONING - COOLING - RAM AIR DUCTS

SIA ALL

21-50-00

Page 25 Sep 15/2021

21-50-00-009

BOEING

737-7/8/8200/9/10 SYSTEM DESCRIPTION SECTION

AIR CONDITIONING - COOLING - RAM AIR ACTUATOR

Purpose

The smart ram air door actuators (SRADAs) move the ram air inlet deflector door, the ram air inlet modulation panels and the ram air exit louvers.

Location

The forward SRADA is in the wing-to-body fairing forward of the air conditioning compartments. The actuator attaches to the ram air inlet support assembly. You get access to the actuator from the bottom of the fuselage, through an access panel. There is a forward ram air actuator for the left and the right ram air systems.

The aft SRADA is outboard of the ram air exhaust duct at the lower end of the duct. The actuator attaches to linkages which control the movement of three louvers that modulate ram air exit flow in response to signals from the forward SRADA. You get access to the actuator through an access panel in the bottom of the fuselage. There is an aft SRADA for the left and the right ram air systems.

Physical Description

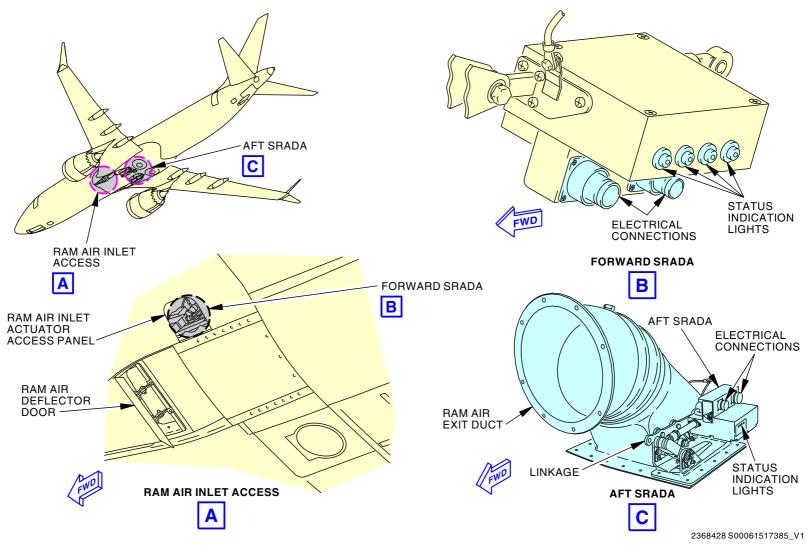
The smart ram air door actuator (SRADA) is a 28v dc motor-operated linear actuator. It has these parts:

- 28 VDC brushless motor
- · Limit switches
- Jackscrew
- · Two electrical connectors

EFFECTIVITY

Four indication lights

Interfaces


The forward SRADA receives WOW and flap position signals from the air conditioning accessory unit (ACAU) and resistance values from the ram air sensor. The aft SRADA receives signals from the forward SRADA.

Functional Description

The control signals for the actuator go through the internal limit switches. The internal limit switches sequence the order of control signals to the motor. The motor turns a linear jackscrew. The jackscrew on the forward SRADA moves the ram air inlet modulation panels and deflector door through mechanical linkages. The jackscrew on the aft SRADA moves three ram air exit louvers through mechanical linkages in response to signals from the forward SRADA.

21-50-00

AIR CONDITIONING - COOLING - RAM AIR ACTUATOR

AIR CONDITIONING - COOLING - RAM AIR ACTUATOR

SIA ALL EFFECTIVITY 21-50-00

AIR CONDITIONING - COOLING - RAM AIR INLET DOOR ASSEMBLY

Purpose

The ram air inlet assembly controls airflow into the ram air system for heat exchanger cooling.

Location

The ram air inlet assembly is in the wing-to-body fairing forward of the air conditioning compartments.

Physical Description

The ram air inlet assembly has these two major assemblies:

- · Ram air inlet modulation panel
- · Ram air inlet deflector door.

Ram Air Inlet Modulation Panel

The ram air inlet modulation panel is made of two panel sections. The two panels are hinged together. The forward panel has a hinge at the forward end that connects to the airplane structure. The aft panel has slide blocks in tracks at the aft end. On the aft panel, clevis fittings on the mid section and the upper surface connect link arms to the shaft assembly.

Ram Air Inlet Deflector Door

The ram air inlet deflector door is a flat surface that is spring-loaded closed. The shaft assembly is a torque tube with two tie-rods and a preloaded spring. The tie-rods connect to clevis fittings on the deflector door.

The ram air inlet deflector door makes sure ice, rocks, and other unwanted material do not go into the ram air inlet.

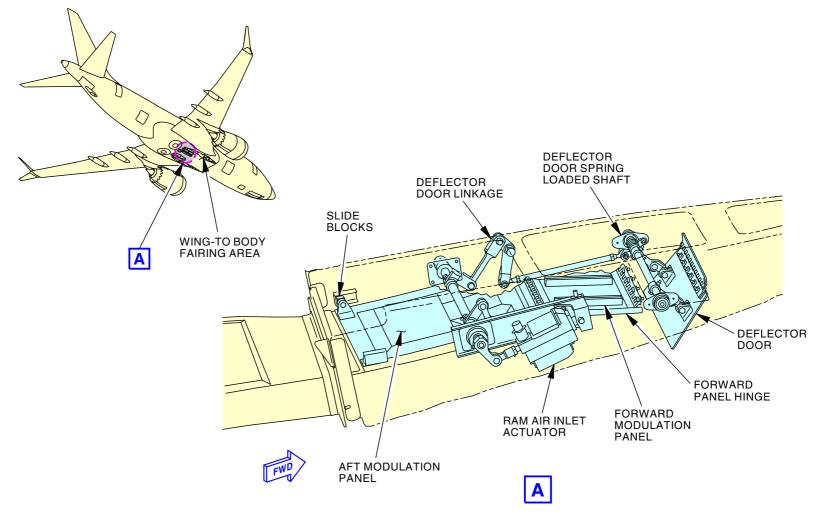
The shaft assembly moves the deflector door.

Functional Description

The ram air actuator moves the modulation panel. Linear movement of the actuator arm transmits movement through a link arm to the modulation panel shaft assembly. The shaft turns link arms that lift or lower the two panels. The aft panel has rollers that let it move forward or aft as the two panels move up or down. The modulation panel and the ram air inlet deflector door are mechanically connected.

The ram air inlet deflector door has two positions. When the airplane is on the ground, the door extends to give protection to the ram air inlet. When the airplane is in the air, the deflector door retracts.

The ram air actuator transmits motion through tie-rods and link arms to the shaft assembly. The shaft assembly transmits motion to the deflector door.


EFFECTIVITY

21-50-00

SIA ALL

AIR CONDITIONING - COOLING - RAM AIR INLET DOOR ASSEMBLY

2368429 S00061517387_V1

AIR CONDITIONING - COOLING - RAM AIR INLET DOOR ASSEMBLY

SIA ALL EFFECTIVITY 21-50-00

Page 29 Sep 15/2021

AIR CONDITIONING - COOLING - RAM AIR TEMPERATURE SENSOR

Purpose

The ram air sensor supplies temperature data to the forward SRADA.

Location

The ram air sensor is in the air conditioning compartment. It is in the duct that connects the compressor section of the ACM to the secondary heat exchanger.

There is a ram air sensor for each pack ram air system.

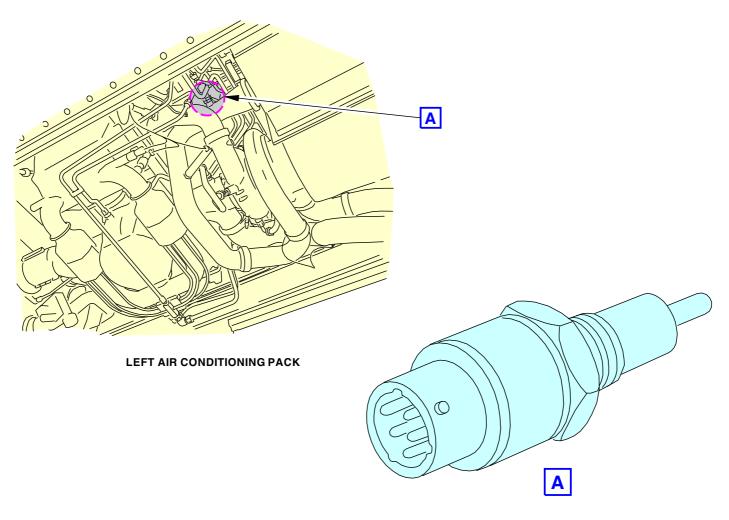
Physical Description

The ram air sensor has a stainless steel probe housing. The probe housing attaches to the electrical connector and is hermetically sealed.

Functional Description

The ram air sensor is a thermistor bead element. The resistance of the temperature sensing element changes as the air temperature changes.

The forward SRADA uses the resistance of the temperature sensor in a control bridge. When the temperature is more or less than 230°F (110°C), the controller changes the position of the ram air inlet modulation panels and the ram air exit louvers..


EFFECTIVITY

21-50-00

SIA ALL

AIR CONDITIONING - COOLING - RAM AIR TEMPERATURE SENSOR

2368430 S00061517389_V1

AIR CONDITIONING - COOLING - RAM AIR TEMPERATURE SENSOR

EFFECTIVITY SIA ALL

21-50-00

Page 31 Sep 15/2021

737-7/8/8200/9/10 SYSTEM DESCRIPTION SECTION

AIR CONDITIONING - COOLING - RAM AIR SYSTEM - FUNCTIONAL DESCRIPTION

General

The ram air system controls the air flow through the primary and secondary heat exchangers. These are the ram air control components:

- Integrated Air System Controller (IASC)
- Forward Smart Ram Air Door Actuator (SRADA)
- Aft SRADA
- Ram air control temperature sensor
- · Ram air inlet deflector door
- · Ram air inlet modulation panels
- · Ram air ducts
- · Ram air exit louvers.

The forward SRADA controls the position of the ram air deflector door and the modulation panels. The forward SRADA is the primary controller for the ram air system. The aft SRADA is commanded by the forward SRADA.

The forward SRADA gets this information for control of the ram air system:

- Airplane on ground and not on ground
- Flaps up and flaps not up
- Air Cycle Machine (ACM) compressor discharge temperature from the ram air sensor
- Built-In-Test Equipment (BITE) initializing from the IASC.

The forward SRADA sends this data to the PZTC:

- No Line Replaceable Unit (LRU) fault
- · Forward SRADA fault
- Aft SRADA fault
- · Ram air sensor fault.

Based on the information that the forward SRADA receives from the ram air system, the forward SRADA positions itself accordingly and communicates its position to the aft SRADA. The aft SRADA then positions itself based on a predetermined positional relationship.

These are the three modes of control for the ram air system:

- Ground
- Flight (flaps not up)
- Flight (flaps up).

The air conditioning accessory unit (ACAU) relays control power to the IASC and the ram air inlet actuator.

There are separate control circuits for the left and right ram air systems.

Ground Mode

When the airplane is on the ground, the Proximity Switch Electronic Unit (PSEU) system cards supply a discrete (ground) to the forward SRADA.

The forward SRADA moves the ram air inlet modulation panels to the full open position and extends the deflector door to the unfaired position. The aft SRADA moves the ram air exhaust louvers to their full open position.

Flight (Flaps Not Up)

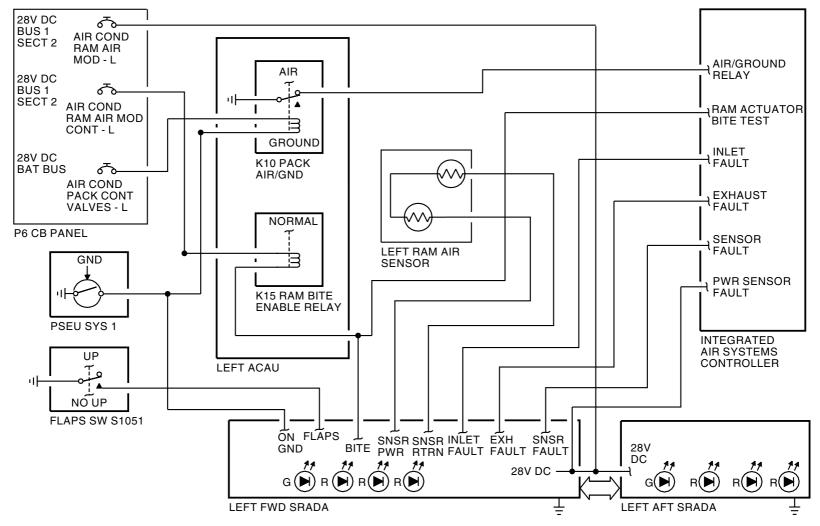
At takeoff, the ram air inlet deflector doors move to the faired position. The ram air exit louvers do not move.

Flight Cruise (Flaps Up)

In flight with the flaps in the full up position, the ground discrete is removed at the S1051 trailing edge flaps up switch (Flap/Slat Electronics Unit (FSEU), M1746). The forward SRADA modulates the ram air inlet panels to maintain a compressor outlet temperature of 230°F (110°C).

BITE

Each SRADA has continuous fault monitoring. There are four indication lights on each SRADA. One green light indicates there are no LRU faults. There are three red fault lights, one for a forward SRADA fault, one for an aft SRADA fault and one for a ram air sensor fault.


The smart ram air control system BITE will communicate control/component faults to the associated PZTC where they will be displayed on the PZTC front panel during a Built-In-Test (BIT) on the controller.

21-50-00

EFFECTIVITY

AIR CONDITIONING - COOLING - RAM AIR SYSTEM - FUNCTIONAL DESCRIPTION

2368431 S00061517391_V2

AIR CONDITIONING - COOLING - RAM AIR SYSTEM - FUNCTIONAL DESCRIPTION

SIA ALL

D633AM102-SIA

Page 33 Sep 15/2021

AIR CONDITIONING - COOLING - AIR CYCLE MACHINE

Purpose

The air cycle machine (ACM) decreases air temperature, by expansion through a turbine.

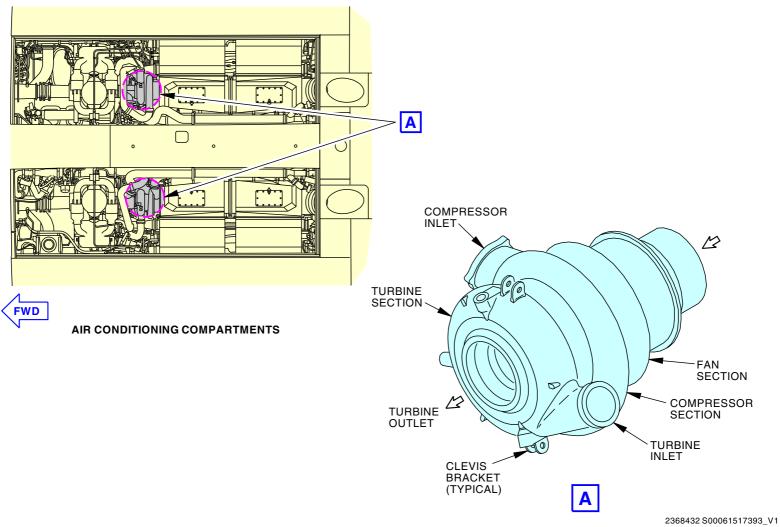
Location

The air cycle machine is in the air conditioning compartment. There is an ACM for each of the left and right pack systems.

Physical Description

The air cycle machine is a high-speed rotating assembly. It has these three sections connected by a common shaft:

- Turbine
- Compressor
- Impeller Fan.


Foil air bearings support the shaft. The air bearings permit the ACM to rotate at high speed with little friction.

EFFECTIVITY

21-50-00

AIR CONDITIONING - COOLING - AIR CYCLE MACHINE

AIR CONDITIONING - COOLING - AIR CYCLE MACHINE

EFFECTIVITY

21-50-00

AIR CONDITIONING - COOLING - SECONDARY HEAT EXCHANGER AND PLENUM/DIFFUSER ASSEMBLY

Purpose

The secondary heat exchanger (HX) removes heat from bleed air that comes from the compressor section of the air cycle machine (ACM).

The secondary plenum/diffuser permits ram air to flow through the secondary heat exchanger and out the ram air exhaust.

Location

The secondary heat exchanger and plenum/diffuser assembly is forward of the primary heat exchanger and plenum/diffuser assembly.

Physical Description

The secondary heat exchanger is an air-to-air, plate-fin, cross-flow type heat exchanger. Two isolated airstreams flow through thin walled channels. The channel walls are made up of plates and fins that increase surface area.

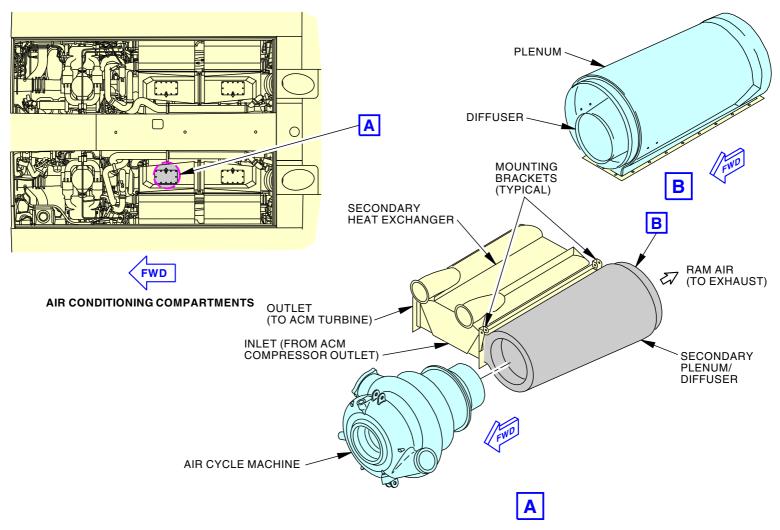
The secondary plenum/diffuser has an outer duct and an inner duct. The outer duct is the plenum and the inner duct is the diffuser.

Functional Description

Air from the ACM compressor outlet flows through the secondary heat exchanger. A cross flow of ram air removes heat before the air enters the ACM turbine inlet.

When the airplane is on the ground, the ACM impeller fan makes a low pressure zone. This pulls air through the heat exchangers and up through the plenum to the impeller fan. Then the impeller fan sends the air through the diffuser and out the ram air exhaust.

When the airplane is in flight, the ram air pressure flows down the plenum and out the fan bypass check valve.


EFFECTIVITY

21-50-00

SIA ALL

AIR CONDITIONING - COOLING - SECONDARY HEAT EXCHANGER AND PLENUM/DIFFUSER ASSEMBLY

2368433 S00061517395 V1

AIR CONDITIONING - COOLING - SECONDARY HEAT EXCHANGER AND PLENUM/DIFFUSER ASSEMBLY

EFFECTIVITY SIA ALL D633AM102-SIA

21-50-00

Page 37 Sep 15/2021

21-50-00-015

AIR CONDITIONING - COOLING - WATER EXTRACTOR DUCT

Purpose

The water extractor duct removes water from the air conditioning pack ducts.

Location

There are two water extractor ducts, one in each air conditioning pack. The water extractor ducts are in the air conditioning ducts downstream of the secondary heat exchangers.

Physical Description

The water extractor ducts have these parts:

- Inlet
- Outlet
- Sump
- · Drain boss.

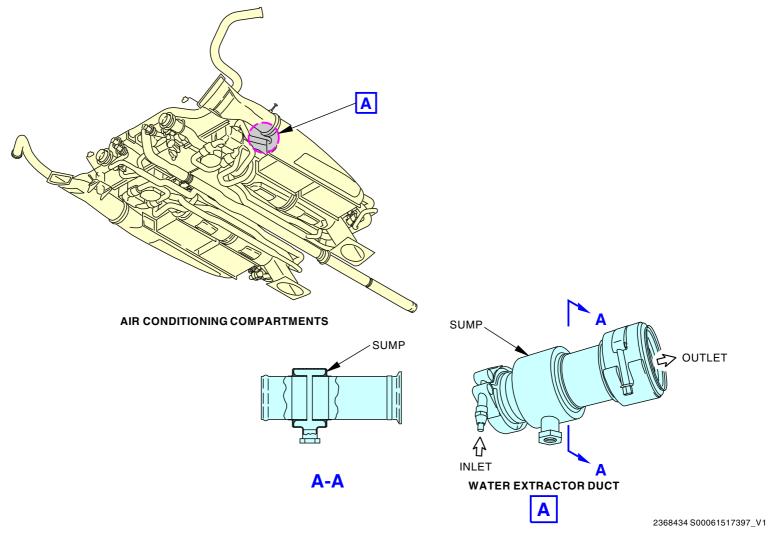
These devices support the extractor ducts:

- Flange clamp (inlet)
- Rubber hose and band clamps (outlet).

Functional Description

The water extractors are coaxial split-can type gravity fluid separators.

Water in the airstream falls into the sump of the water extractor duct. The sump collects the water and pressure in the extractor forces the water out of the sump into the drain boss. A line connects the drain boss to the water spray nozzle.


EFFECTIVITY

21-50-00

SIA ALL

AIR CONDITIONING - COOLING - WATER EXTRACTOR DUCT

AIR CONDITIONING - COOLING - WATER EXTRACTOR DUCT

21-50-00

SIA ALL

EFFECTIVITY

AIR CONDITIONING - COOLING - REHEATER

Purpose

The reheater increases the temperature of the air in the air conditioning pack before it enters the turbine of the air cycle machine. This increases the efficiency of the turbine.

Location

There are two reheaters, one for each air conditioning pack. The reheaters are part of high pressure water separator assemblies. These assemblies are in the forward area of the air conditioning pack compartments.

Physical Description - Reheaters

The reheaters have these features:

- Inlet (hot stream from secondary heat exchanger)
- · Outlet (cooled) to condenser
- · Reheater core case
- Inlets (cold stream from water extractors)
- Outlet (warmed) to air cycle machine turbine
- · Pack sensor bosses.

These pack bulbs are on the reheater:

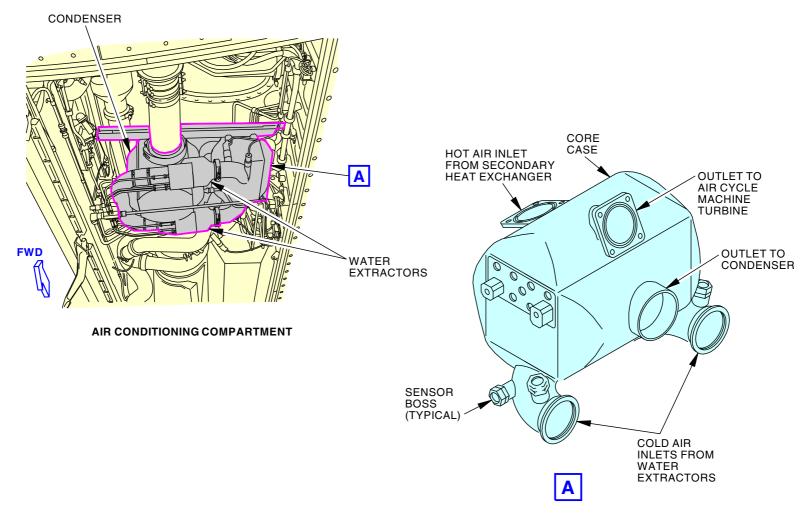
- · Pack temperature sensor
- Pack temperature bulb.

Functional Description

The reheater is a a plate-fin, single-pass, crossflow, air-to-air heat exchanger. It is made of aluminum.

The reheater is a regenerative-type heat exchanger. It has these functions:

- Precools the pack air from the secondary heat exchanger before it enters the condenser
- Reheats the pack air as it leaves the water extractors.


EFFECTIVITY

21-50-00

SIA ALL

AIR CONDITIONING - COOLING - REHEATER

2368435 S00061517399_V1

AIR CONDITIONING - COOLING - REHEATER

21-50-00

21-50-00-017

737-7/8/8200/9/10 SYSTEM DESCRIPTION SECTION

AIR CONDITIONING - COOLING - CONDENSER

Purpose

The condenser decreases the temperature of the air in the air conditioning pack to below the dew point. This causes the water vapor in the airstream to go into a liquid form.

Location

There are two condensers, one in each air conditioning pack. The condensers are part of the high pressure water separator assemblies. These assemblies are in the forward area of the air conditioning pack compartments.

Physical Description

The condenser has these parts:

- Inlet (hot stream from reheater)
- · Outlet (warmed) to pack discharge check valve
- · Outlet manifold (cooled) to water extractors
- Condenser core case
- · Inlet (cold stream from turbine discharge)
- · Delta pressure sense line bosses.

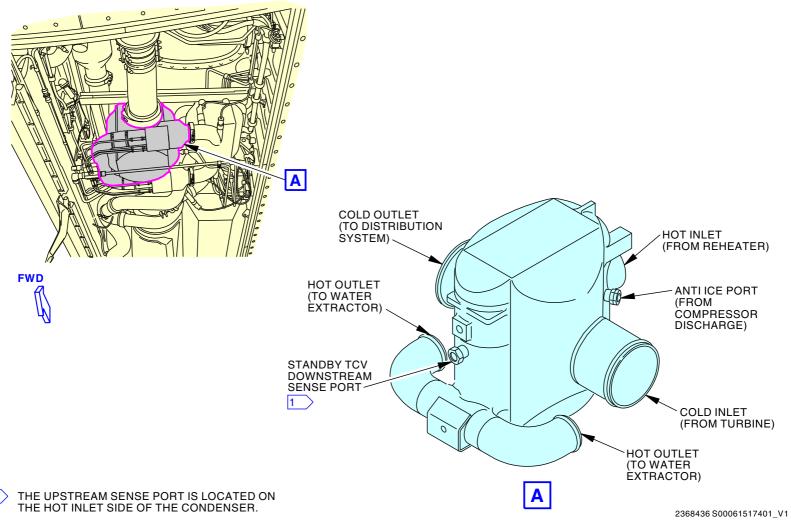
Functional Description

The condenser is a plate-fin, single-pass, crossflow, air-to-air heat exchanger. It is made of aluminum.

The condenser uses turbine discharge air to cool the pack air after it makes the first pass through the reheater.

The air cools enough to condense moisture. Part of the cold air bypasses around the condenser core and warm air comes through de-icing passages in the face of the core to prevent ice on the cold air face of the core. A free passage between the two condenser cores is an fail-safe if there is ice.

Delta pressure sense line bosses connect the sense lines to the pneumatic servo-actuator of the standby temperature control valve. Ice in the condenser creates a differential pressure that is enough to open the standby temperature control valve. Warm air from the standby temperature control valve, ported into the high pressure water separator mix muff, warms the condenser and melts the ice.


EFFECTIVITY

21-50-00

SIA ALL

AIR CONDITIONING - COOLING - CONDENSER

AIR CONDITIONING - COOLING - CONDENSER

21-50-00

SIA ALL

EFFECTIVITY

AIR CONDITIONING - COOLING - WATER EXTRACTOR

Purpose

The water extractors remove water from the air conditioning pack air.

Location

There are four water extractors, two in each air conditioning pack. The water extractors are part of high pressure water separator assemblies. These assemblies are in the forward area of the air conditioning pack compartments.

Physical Description

The water extractors have these parts:

- Inlet
- Outlet
- Swirl chamber
- Sump
- Water drain nipples.

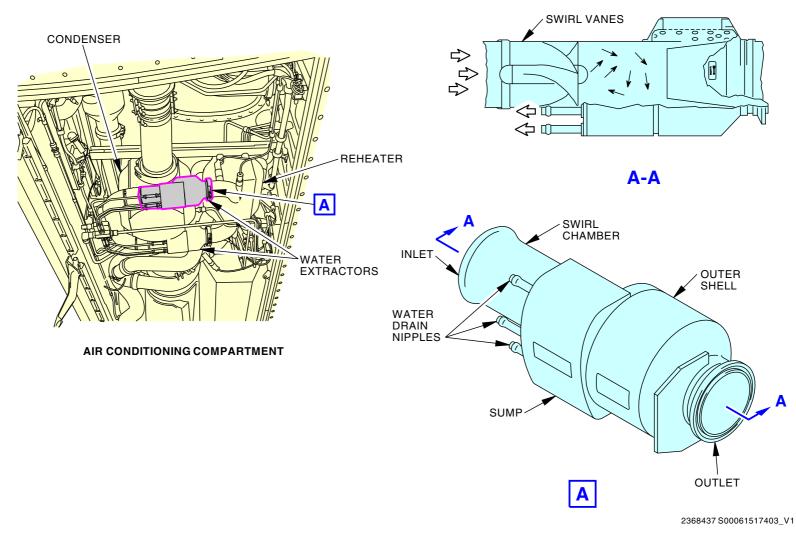
A rubber hose and band clamps connect the water extractor inlet to the condenser. A flange clamp connects the water extractor outlet to the reheater. Hoses and band clamps connect the water drain nipples to the water spray nozzle lines.

Functional Description

The water extractors are inertial-type centrifugal flow fluid separators.

The inlet of the water extractor has a swirl chamber to create a vortex airflow. The water part of the airstream goes into the outer shell of the extractor by centrifugal force. A sump collects the water and pressure in the extractor forces the water out of the sump into the drain nipples. Lines connect the drain nipples to the water spray nozzle.

The water spray nozzle injects the water into the ram air duct. This cools the ram air stream by evaporation.


EFFECTIVITY

21-50-00

AIR CONDITIONING - COOLING - WATER EXTRACTOR

AIR CONDITIONING - COOLING - WATER EXTRACTOR

21-50-00

SIA ALL

EFFECTIVITY

AIR CONDITIONING - COOLING - WATER COLLECTION MANIFOLD

Purpose

The water collection manifold collects the water separated from the air condtioning pack water extractor duct and the two water extractors for distribution into the ram air airstream.

Location

There are two water collection manifolds, one in each air conditioning pack. Each water collection manifold is attached to the inboard, lower side of the associated condenser.

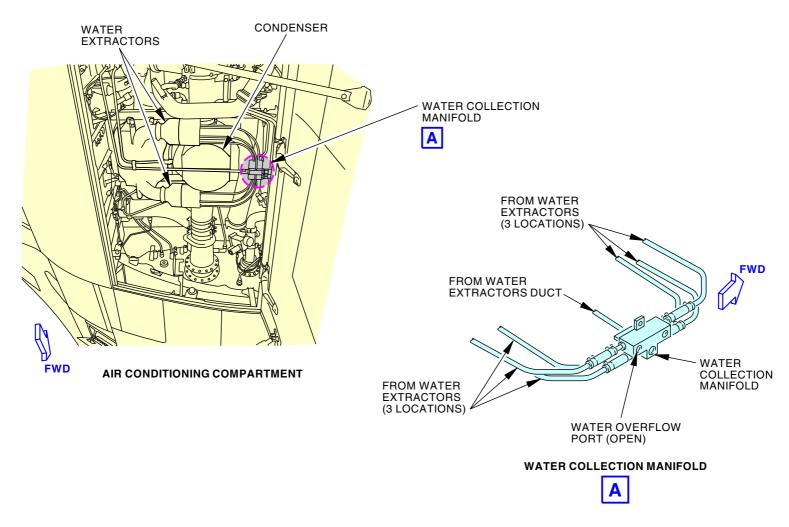
Physical Description

The water collection manifold has these features:

- Six input ports for water from the two water extractors
- · One input port for water from the water extractor duct
- · One overflow port
- · One water output port
- · One air output port
- Sump

Functional Description

The water collection manifold is the point of collection for all separated water that is subsequently routed to the water spray nozzle and into the ram air cooling airstream.


There is a water overflow port in the water collection manifold. This port will discharge water into the pack bay in the event that the water spray nozzle becomes plugged. This is to prevent water from entering the turbine section of the ACM and freezing which can possibly damage the ACM and condenser.

SIA ALL

21-50-00

AIR CONDITIONING - COOLING - WATER COLLECTION MANIFOLD

2368438 S00061517405 V1

AIR CONDITIONING - COOLING - WATER COLLECTION MANIFOLD

21-50-00

21-50-00-020

AIR CONDITIONING - COOLING - WATER SPRAY NOZZLE

Purpose

The water spray nozzle takes water from the air conditioning pack water extractor devices and injects it into the ram air inlet duct.

Location

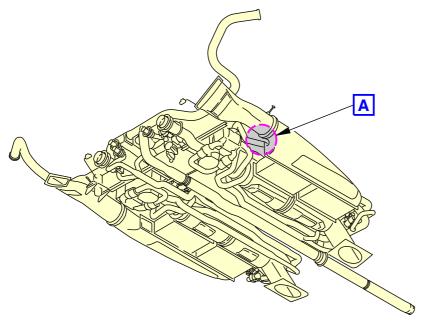
There are two water spray nozzles, one for each air conditioning pack. They are on the outboard bulkhead of the air conditioning compartments.

Physical Description

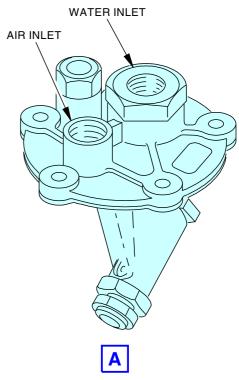
The water spray nozzles have these parts:

- · Water line inlets
- · Spray nozzle.

Functional Description


Water extractor devices remove water in the air conditioning pack airstream. Lines carry the water from the extractors to the water spray nozzles. The water spray nozzle injects the water into the ram air duct. This cools the ram air stream by evaporation.

EFFECTIVITY


21-50-00

AIR CONDITIONING - COOLING - WATER SPRAY NOZZLE

AIR CONDITIONING COMPARTMENTS

2368439 S00061517407_V1

AIR CONDITIONING - COOLING - WATER SPRAY NOZZLE

SIA ALL

21-50-00

Page 49 Sep 15/2021

AIR CONDITIONING - COOLING - HIGH PRESSURE WATER SEPARATOR MIX MUFF

Purpose

The high pressure water separator mix muff mixes the warm air from the pack temperature control valves with the cold discharge air from the air cycle machine turbine.

Location

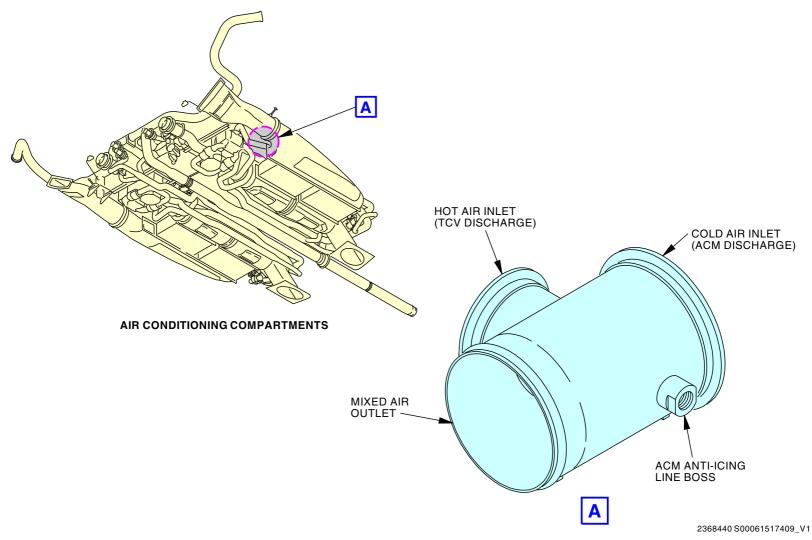
There are two high pressure water separator mix muffs. They are in the air conditioning pack compartments between the air cycle machines and the condensers.

Physical Description

The high pressure water separator mix muffs have these parts:

- Temperature control valve inlets
- Turbine discharge inlet
- Outlet
- Air cycle machine de-icing line boss.

Functional Description


The high pressure water separator mix muffs are duct manifolds. They have interior baffles to mix the hot and cold input airstreams.

EFFECTIVITY

21-50-00

AIR CONDITIONING - COOLING - HIGH PRESSURE WATER SEPARATOR MIX MUFF

AIR CONDITIONING - COOLING - HIGH PRESSURE WATER SEPARATOR MIX MUFF

SIA ALL EFFECTIVITY 21-50-00

AIR CONDITIONING - COOLING - CONDITIONED AIR CHECK VALVE

Purpose

The conditioned air check valve lets one-way air flow from the pack to the main distribution manifold.

The packs supply pressurized air through the check valve to the distribution system. The check valve prevents airflow from the pressurized distribution system to the unpressurized air conditioning compartment.

Location

The conditioned air check valve is in the forward section of the air conditioning bay.

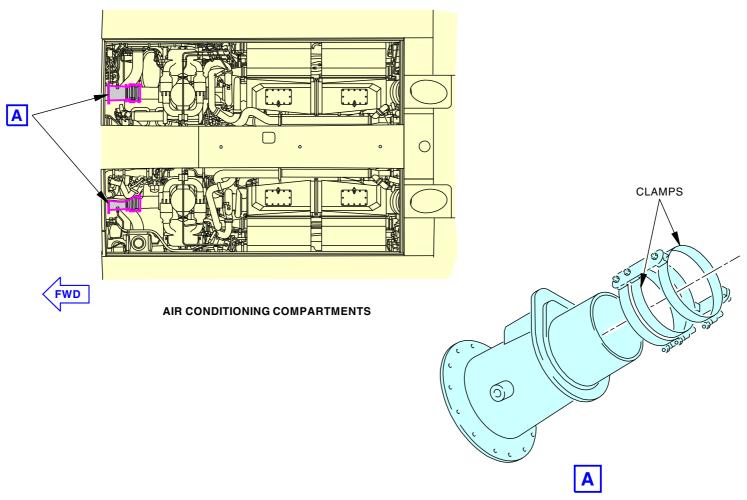
Physical Description

The conditioned air check valve is a swing type check valve. An arrow on the outside of the valve shows the flow direction.

There is one conditioned air check valve in each pack system.

Functional Description

The check valve prevents airflow to the pack. It opens to permit air flow from the air conditioning pack to the main distribution manifold.


EFFECTIVITY

21-50-00

SIA ALL

AIR CONDITIONING - COOLING - CONDITIONED AIR CHECK VALVE

2368441 S00061517411_V1

AIR CONDITIONING - COOLING - CONDITIONED AIR CHECK VALVE

SIA ALL

21-50-00

Page 53 Sep 15/2021

21-50-00-023

AIR CONDITIONING - COOLING - PACK TEMPERATURE SENSOR

Purpose

The pack temperature sensor measures the temperature in the air conditioning pack. It gives feedback to the integrated air systems controller.

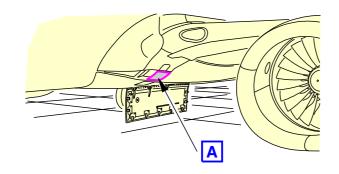
Location

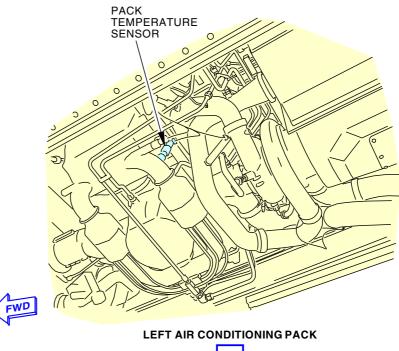
There are two pack temperature sensors, one in each air conditioning pack. They are on the pack high pressure water separator assemblies. Access is through the air conditioning compartment doors.

Functional Description

The pack temperature sensors are thermistor devices. Their resistance changes with temperature.

The temperature sensor resistance is the feedback to the integrated air systems controller. The integrated air systems controller uses the feedback to control the discharge temperature of the air conditioning system.


Each pack temperature sensor has two sense elements. One element to give feedback to each of the two integrated air systems controllers. One element gives pack temperature feedback to the auto (normal) control of its related integrated air systems controller. The other element gives pack temperature feedback to the standby control of the opposite integrated air systems controller.


EFFECTIVITY

21-50-00

AIR CONDITIONING - COOLING - PACK TEMPERATURE SENSOR

2368442 S00061517413_V1

AIR CONDITIONING - COOLING - PACK TEMPERATURE SENSOR

EFFECTIVITY

21-50-00

AIR CONDITIONING - COOLING - MIX MANIFOLD TEMPERATURE SENSOR

Purpose

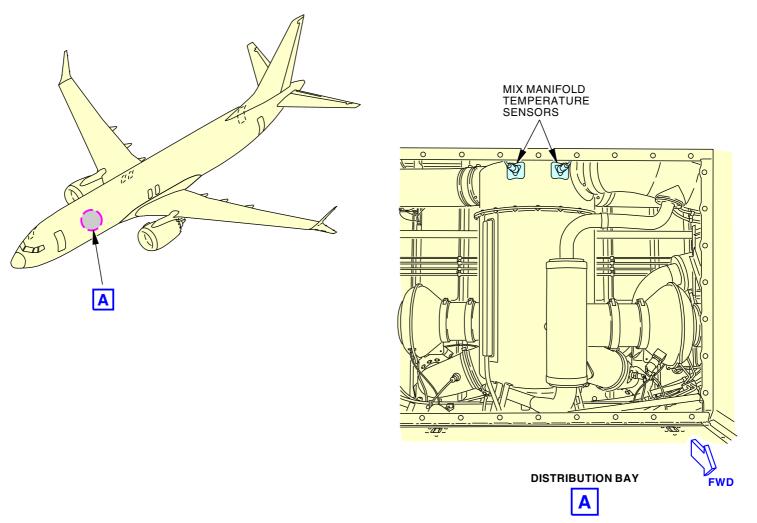
The mix manifold temperature sensors measure the temperature in the mix manifold of the air conditioning system. They give feedback to the integrated air systems controllers.

Location

There are two mix manifold temperature sensors. They are similar in design and operation. They are on the upper forward wall of the mix manifold. Access is through the center aft bulkhead panel in the forward cargo compartment.

Functional Description

The mix manifold temperature sensors are thermistor devices. Their resistance changes with temperature.


The temperature sensor resistance is the feedback to the integrated air systems controller. The integrated air systems controller uses the feedback to prevent freezing temperatures in the air conditioning distribution system.

21-50-00

AIR CONDITIONING - COOLING - MIX MANIFOLD TEMPERATURE SENSOR

)

2368443 S00061517415_V1

AIR CONDITIONING - COOLING - MIX MANIFOLD TEMPERATURE SENSOR

SIA ALL

21-50-00

Page 57 Sep 15/2021

AIR CONDITIONING - COOLING - TEMPERATURE CONTROL VALVE

Purpose

The temperature control valve is the primary valve to control the discharge temperature of the air conditioning pack.

Location

There are two temperature control valves, one for each air conditioning pack. They are in the air conditioning compartments.

Physical Description

The temperature control valve has these parts:

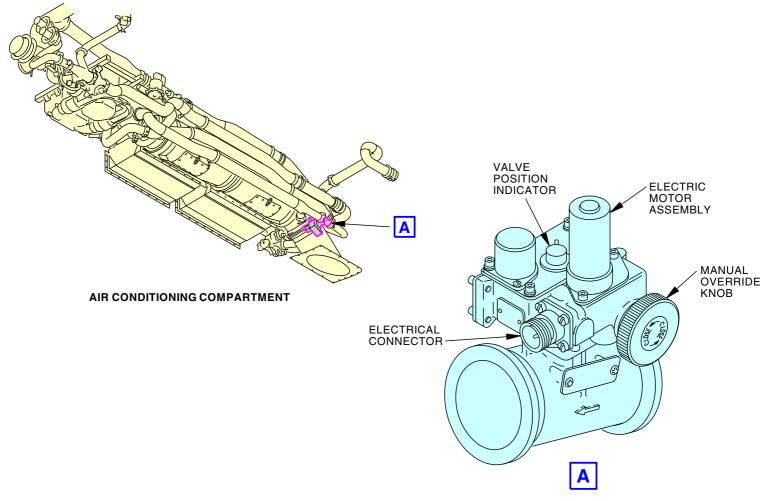
- Valve flow body
- · Electric motor actuator assembly
- · Position indicator
- · Manual override knob.

Two vee-flange clamps support the valve.

Functional Description

The valve is an electric motor-driven single plate butterfly valve. A mechanical gear train with a slip clutch transfers motor motion to the valve.

The valve uses 115v ac power. The valve drive signal comes through the ACAU from the integrated air systems controllers.


EFFECTIVITY

21-50-00

SIA ALL

AIR CONDITIONING - COOLING - TEMPERATURE CONTROL VALVE

2368444 S00061517417_V1

AIR CONDITIONING - COOLING - TEMPERATURE CONTROL VALVE

SIA ALL EFFECTIVITY 21-50-00

737-7/8/8200/9/10 SYSTEM DESCRIPTION SECTION

AIR CONDITIONING - COOLING - STANDBY TEMPERATURE CONTROL VALVE

Purpose

The standby temperature control valve does these things:

- Gives backup control for the discharge temperature of the air conditioning pack (normal temperature control system failure)
- Increases the temperature of pack discharge air to prevent ice formation in the condenser.

Location

There are two standby temperature control valves, one for each air conditioning pack. They are in the air conditioning pack compartments.

Physical Description

The standby temperature control valve has these parts:

- · Valve flow body
- · Electromagnetic control valve assembly
- · Delta pressure servo control assembly
- Pneumatic actuator
- Position indicator
- · Sense ports.

Two V-band clamps support the valve.

Functional Description

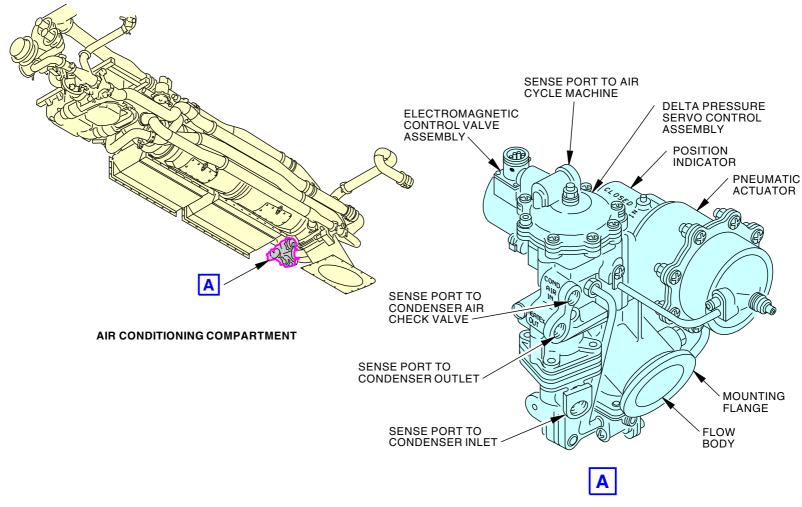
The valve is a pneumatically actuated butterfly-type modulating and shutoff valve. It is spring-loaded to the closed position.

Control pressure to the actuator opens and modulates the valve. The control pressure source is the upstream side of the valve. These valve devices control the pressure to the valve actuator:

- · Electromagnetic control valve assembly
- Delta pressure servo control assembly.

EFFECTIVITY

A signal from the integrated air systems controller standby pack control channel drives the electromagnetic control device.


Pneumatic lines sense condenser differential pressure and drive the delta pressure servo control device. Ice in the condenser increases the pressure differential.

If the electromagnetic and the delta pressure controls operate at the same time, the device that gives the largest valve open pressure will control.

21-50-00

AIR CONDITIONING - COOLING - STANDBY TEMPERATURE CONTROL VALVE

2368445 S00061517419 V1

AIR CONDITIONING - COOLING - STANDBY TEMPERATURE CONTROL VALVE

SIA ALL EFFECTIVITY 21-50-00

AIR CONDITIONING - COOLING - STANDBY TEMPERATURE CONTROL VALVE - FUNCTIONAL DESCRIPTION

Functional Description

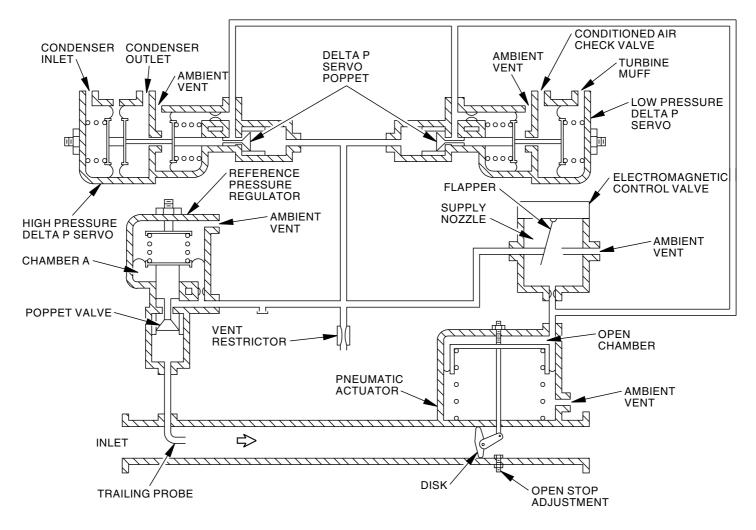
The standby temperature control valve is electrically and pneumatically controlled and pneumatically operated.

If the condenser begins to ice, differential pressure across the condenser is sensed. This differential pressure acts on the high or low pressure delta P servo.

The servo operates a poppet valve to control the actuation pressure that goes from the reference pressure regulator to the pneumatic actuator. This opens the valve and increases the hot air flow into the condenser. With the increased hot airflow, the condenser will deice and the valve closes.

Electrical control of the standby temperature control valve is part of the standby mode of operation. The standby temperature control electrically moves a flapper in the electromagnetic control valve to control actuation pressure to the pneumatic actuator.

If there are simultaneous signals from the differential pressure sensors and the electromagnetic control valve, the device with the higher demand has priority.


EFFECTIVITY

21-50-00

SIA ALL

AIR CONDITIONING - COOLING - STANDBY TEMPERATURE CONTROL VALVE - FUNCTIONAL DESCRIPTION

2368446 S00061517421 V1

AIR CONDITIONING - COOLING - STANDBY TEMPERATURE CONTROL VALVE - FUNCTIONAL DESCRIPTION

21-50-00 **EFFECTIVITY** SIA ALL D633AM102-SIA ECCN 9E991 BOEING PROPRIETARY - See title page for details

Page 63 Sep 15/2021

737-7/8/8200/9/10 SYSTEM DESCRIPTION SECTION

AIR CONDITIONING - COOLING - AUTO CONTROL - FUNCTIONAL DESCRIPTION

Functional Description

When you put the pack switch to the AUTO/HIGH position, K13 PACK/HIGH relay energizes if the K7 pack valve closed relay is open. When K13 is energized, the integrated air systems controller is enabled and the K17 pack temperature control valve inop relay is energized.

K21 alternate power relay gives two possible sources for electrical power. When K21 energizes, it gives 28v dc from bus 1. When K21 de-energizes, it gives 28v dc from the battery bus. 28v dc goes to these relays:

- K13 pack AUTO/HIGH relay
- K17 pack TCV INOP relay.

The integrated air systems controller controls the position of the temperature control valve. To move the temperature control valve, the auto pack control in the integrated air systems controller compares the temperature requirements of the three zones. The integrated air systems controller satisfies the temperature requirement of the zone that needs the most cooling. The controller uses this temperature requirement as a PACK DEMAND signal to establish the temperature output of the pack. The temperature requirement is compared with the actual pack outlet temperature sensed by the pack temperature sensor. This signal is compared with a 35°F (2°C) limit for ice protection of the mix manifold.

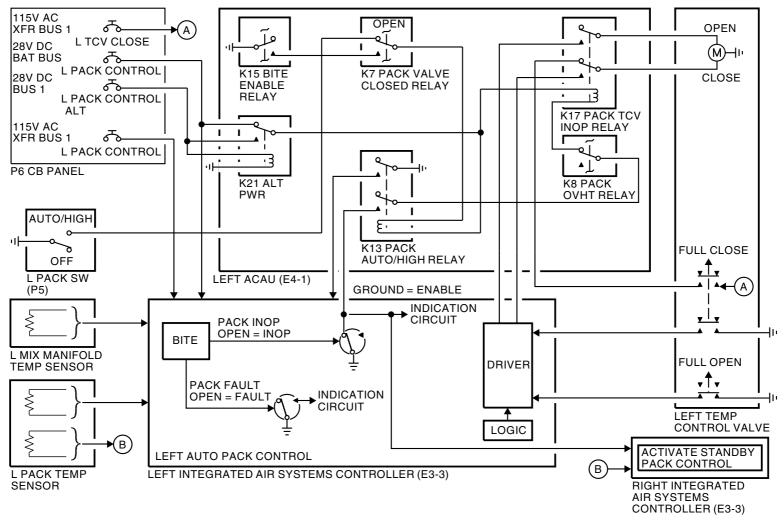
Ice protection is provided for the mix manifold by a 35°F (2°C) temperature limit to the output of the pack. The mix manifold temperature input to the integrated air systems controller is from two sensors on the mix manifold. The integrated air systems controller compares the two inputs and uses the coldest signal. The mix manifold temperature and the PACK DEMAND are then compared with a 35°F (2°C) limit and the controller controls the temperature control valve.

Open and close limit switches in the temperature control valve provide feedback signals to the integrated air systems controllers.

When the zone temperature selectors are in the OFF position, the integrated air systems controllers will control the left pack to maintain a fixed temperature of $75^{\circ}F$ ($24^{\circ}C$) and the right pack to maintain a fixed temperature of $65^{\circ}F$ ($18^{\circ}C$) as measured at the pack temperature sensors.

These are the failures that cause the temperature control valve to close and activate the standby temperature control in the opposite controller:

- Pack control
- · Pack sensor or interface
- Temperature control valve or driver.


These failures set the pack INOP and FAULT switches.

21-50-00

EFFECTIVITY

AIR CONDITIONING - COOLING - AUTO CONTROL - FUNCTIONAL DESCRIPTION

2368447 S00061517423_V2

AIR CONDITIONING - COOLING - AUTO CONTROL - FUNCTIONAL DESCRIPTION

SIA ALL D633AM102-SIA

Page 65 Sep 15/2021

AIR CONDITIONING - COOLING - STANDBY CONTROL - FUNCTIONAL DESCRIPTION

Purpose

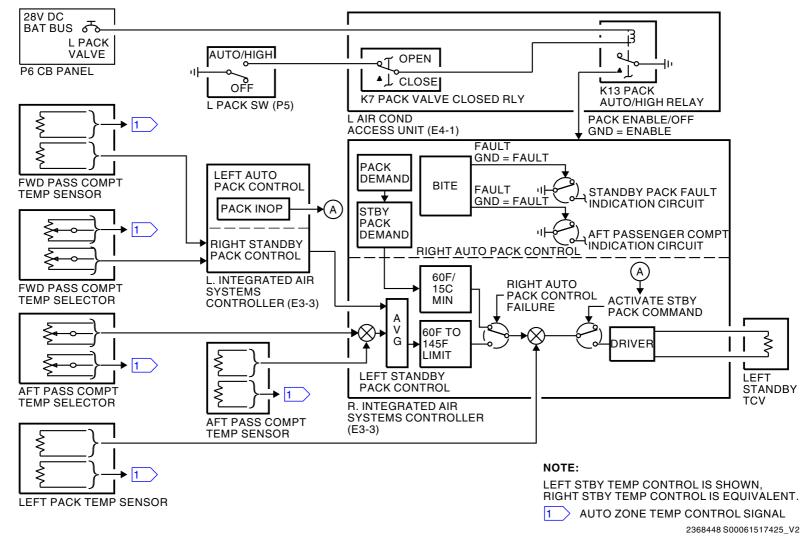
The standby temperature control provides temperature control of the pack output if there is a pack automatic control failure.

Functional Description

When you put the pack switch to the AUTO/HIGH position, K13 PACK/HIGH relay energizes if the K7 pack valve closed relay is open. When K13 is energized, the integrated air systems controller is enabled. If the pack automatic temperature control fails, there is an activate standby pack command signal. This connects the opposite controller to the standby temperature control valve for temperature control.

The standby pack control uses the standby temperature control valve to regulate the output of the pack.

If all zone and auto pack temperature controls fail, the analog standby pack temperature controls will satisfy the average temperature demand of the two passenger cabin zones. The flight compartment zone is not used.


NOTE: If the auto and standby pack temperature controls fail, the pack should be shutdown. If this is not done, the pack continues to operate until an overtemperature condition occurs.

EFFECTIVITY

21-50-00

AIR CONDITIONING - COOLING - STANDBY CONTROL - FUNCTIONAL DESCRIPTION

AIR CONDITIONING - COOLING - STANDBY CONTROL - FUNCTIONAL DESCRIPTION

SIA ALL

D633AM102-SIA

ECCN 9E991 BOEING PROPRIETARY - See title page for details

21-50-00

Page 67 Sep 15/2021

AIR CONDITIONING - COOLING - PACK OVERHEAT SWITCHES

Purpose

These temperature switches monitor the pack for an overheat condition:

- · Compressor discharge overheat switch
- · Turbine inlet overheat switch
- · Pack discharge overheat switch.

Location

There is a compressor discharge overheat switch and a turbine inlet overheat switch in each air conditioning compartment.

The compressor discharge overheat switch is in the duct between the air cycle machine compressor section and the secondary heat exchanger.

The turbine inlet overheat switch is in the duct from the reheater to the air cycle machine turbine section.

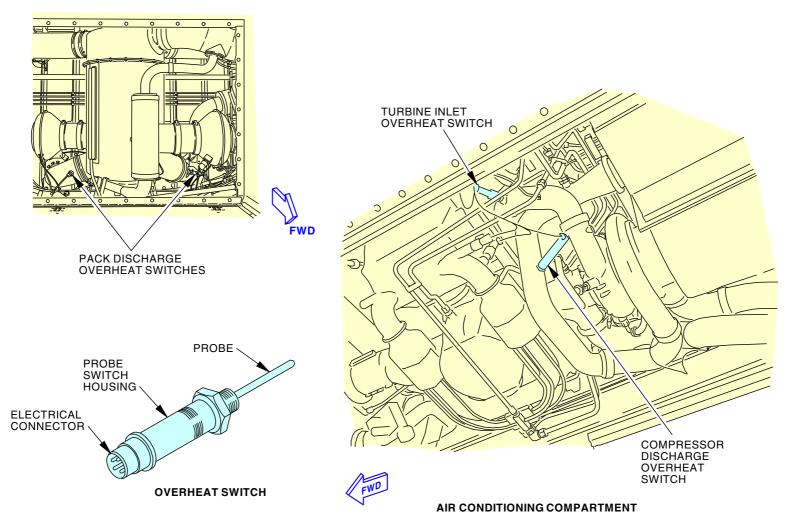
The pack discharge overheat switch is in the input duct to the mix manifold in the distribution bay.

Functional Description

The overheat switches look similar. The compressor discharge overheat switch and the turbine inlet overheat switch have different operation temperatures.

The compressor discharge overheat switch has an operation temperature of 390°F (199°C).

The turbine inlet overheat switch has an operation temperature of 210°F (99°C).


The pack discharge overheat switch has an operation temperature of 250°F (121°C).

EFFECTIVITY

SIA ALL

AIR CONDITIONING - COOLING - PACK OVERHEAT SWITCHES

2368449 S00061517427_V1

AIR CONDITIONING - COOLING - PACK OVERHEAT SWITCHES

SIA ALL

21-50-00-031

21-50-00

AIR CONDITIONING - COOLING - PACK PROTECTION - FUNCTIONAL DESCRIPTION

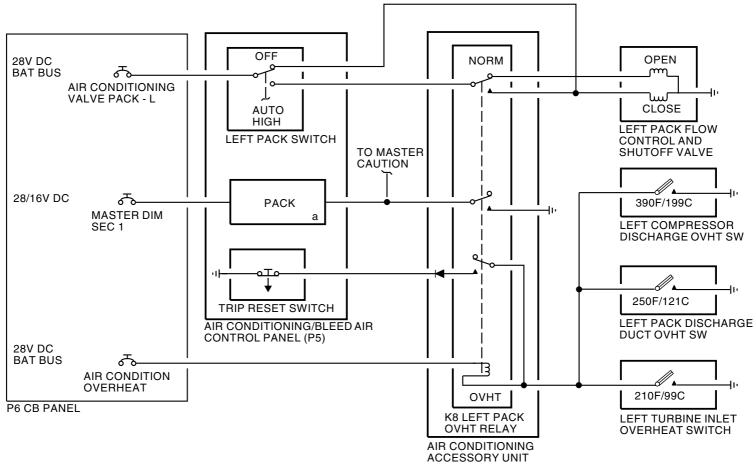
Functional Description

Pack protection is a function of these three switches:

- · Compressor discharge overheat switch
- · Turbine inlet overheat switch
- Pack discharge duct overheat switch

The switches are normally open. When an overheat condition occurs, the overheat switch closes. This energizes the pack overheat relay. When the pack overheat relay energizes, power is supplied to the close solenoid of the flow control and shutoff valve.

These are the indications when a pack trip occurs:


- · PACK amber light
- MASTER CAUTION and AIR COND annunciator lights.

The overheat relay latches in the overheat position. When the condition that caused the pack trip off is corrected, push the TRIP RESET switch on the air conditioning/bleed air control panel to de-energize the overheat relay.

21-50-00

AIR CONDITIONING - COOLING - PACK PROTECTION - FUNCTIONAL DESCRIPTION

NOTE:

LEFT PACK PROTECTION IS SHOWN, RIGHT PACK IS EQUIVALENT.

2368450 S00061517429_V1

AIR CONDITIONING - COOLING - PACK PROTECTION - FUNCTIONAL DESCRIPTION

SIA ALL

21-50-00

Page 71 Sep 15/2021

737-7/8/8200/9/10 SYSTEM DESCRIPTION SECTION

AIR CONDITIONING - COOLING - FUNCTIONAL DESCRIPTION

Functional Description

The flow control and shutoff valve gets hot bleed air from the pneumatic manifold. The flow control and shutoff valve controls the flow of hot bleed air to the trim air system, primary heat exchanger and to the two temperature control valves. A hot air connection downstream of the FCSOV supplies hot bleed air to the turbine case. This prevents ice in the turbine case.

The ram air system controls the flow of ram air to the primary and secondary heat exchangers. These are the ram air system components:

- · Ram air control temperature sensor
- · Integrated air systems controller
- · Ram air inlet actuator
- Ram air inlet deflector door
- · Ram air inlet modulation panels
- Impeller fan
- · Fan bypass check valve.

When bleed air goes through the primary heat exchanger, ram air removes some of the heat. This partially cool bleed air goes to the compressor section of the air cycle machine.

The compressor section increases the pressure and temperature of the partially cool bleed air. This compressed air goes to the secondary heat exchanger.

When the compressed air goes through the secondary heat exchanger, ram air removes some of the heat. This bleed air goes through the water extractor duct and into the reheater.

Bleed air that leaves the secondary heat exchanger goes through the hot side of the reheater. Air that goes through the reheater the first time is cooled by colder air from the condenser. The temperature of the bleed air increases as it goes through the reheater a second time and into the turbine section of the air cycle machine.

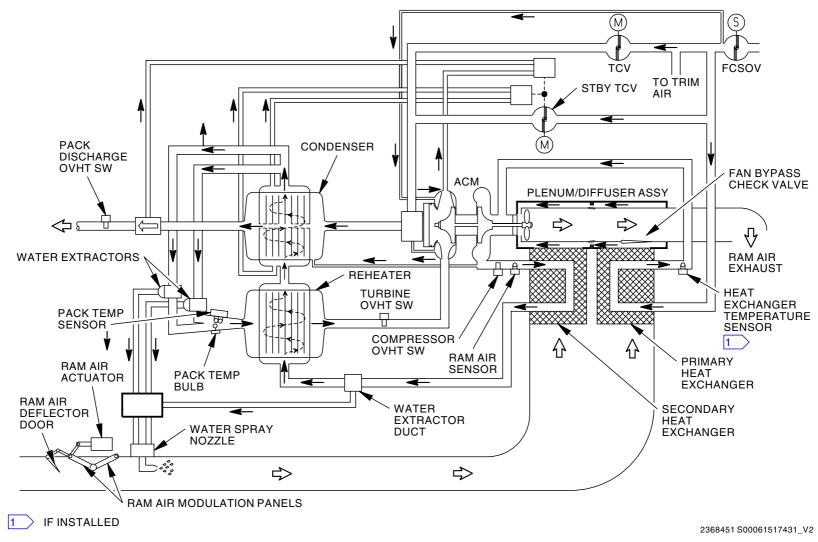
Air that leaves the turbine goes through the cold side of the condenser. Air flow from the condenser divides into two paths, each path goes through a water extractor.

The water extractors remove moisture. This moisture goes to the water spray nozzle. The water spray nozzle sprays the water into the ram air duct.

Part of the cold air bypasses through the condenser core to prevent ice in the condenser. This supplies warm air through deicing passages in the core and by a mix of hot bleed air into the turbine muff at the cold air inlet. The standby temperature control valve senses condenser ice conditions and sends hot bleed air to the turbine muff.

Overheat Protection

The pack has overheat protection components that automatically stop operation of the pack. These are the overheat protection components:


- Compressor discharge overheat switch 390°F (199°C)
- Turbine inlet overheat switch 210°F (99°C)
- Pack discharge overheat switch 250°F (121°C).

EFFECTIVITY

21-50-00

AIR CONDITIONING - COOLING - FUNCTIONAL DESCRIPTION

AIR CONDITIONING - COOLING - FUNCTIONAL DESCRIPTION

21-50-00

SIA ALL

EFFECTIVITY

AIR CONDITIONING - COOLING - FUNCTIONAL DESCRIPTION

THIS PAGE IS INTENTIONALLY LEFT BLANK

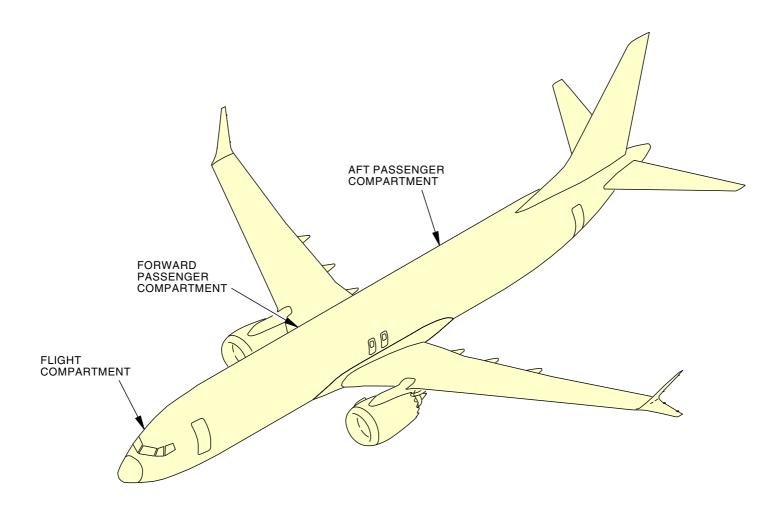
AIR CONDITIONING - TEMPERATURE CONTROL - INTRODUCTION

Purpose

The temperature control system controls the air temperature in these locations:

- Flight compartment
- Forward passenger compartment
- · Aft passenger compartment.

Abbreviations and Acronyms


- · ACAU air conditioning accessory unit
- auto automatic
- compt compartment
- · ctrl control
- dk deck
- EE electronic equipment
- flt flight
- FWD forward
- OVHT overheat
- PASS passenger
- prsov pressure regulating shutoff valve
- ref reference
- STBY standby
- vlv valve

EFFECTIVITY

21-60-00

AIR CONDITIONING - TEMPERATURE CONTROL - INTRODUCTION

2368452 S00061517435_V1

AIR CONDITIONING - TEMPERATURE CONTROL - INTRODUCTION

SIA ALL
D633AM102-SIA

21-60-00

Page 3 Sep 15/2021

THIS PAGE IS INTENTIONALLY LEFT BLANK

BOEING

737-7/8/8200/9/10 SYSTEM DESCRIPTION SECTION

AIR CONDITIONING - TEMPERATURE CONTROL - GENERAL DESCRIPTION

General Description

The temperature control system can operate when the air conditioning packs operate. The packs operate when there is a bleed source from the pneumatic system.

The air conditioning accessory units (ACAU) monitor the operation logic for the pneumatic and air conditioning systems. It enables the temperature control system when the air systems are serviceable.

The integrated air systems controllers receive control signals from the temperature control panel. Temperature sensors send temperature data from the flight and passenger compartments. The integrated air systems controllers send control and operation signals through the ACAU for temperature control.

The temperature control system has overheat switches in the supply ducts. The overheat switches give indication and stop operation when the temperature is out of limits.

Temperature bulbs in the passenger cabin and duct monitor and send temperature data to the cabin temperature control panel. The temperature control panel shows air temperatures.

Temperature Control Panel

The temperature control panel is the flight crew interface for system control and indication.

The flight crew selects the temperature setpoints for the three airplane zones with the temperature selectors.

Integrated Air Systems Controllers

EFFECTIVITY

There are two integrated air systems controllers. They monitor system parameters and control the air conditioning temperatures for the three air conditioning zones.

The integrated air systems controllers are part of a redundant, fault tolerant control system. The system reconfigures to give optimum performance when there are faults.

The controllers process inputs from these components:

- Zone temperature selectors
- · Zone cabin temperature sensors
- · Zone duct temperature sensors
- · Pack temperature sensors
- · Mix manifold sensors.

The controllers modulate these valves in response to temperature control requirements:

- Pack temperature control valves (normal and standby)
- · Zone trim air modulating valves.

Ram Air Systems

Each of the two systems has an inlet and an exit Smart Ram Air Door Actuator (SRADA). The ram air control temperature sensor sends a temperature signal to the inlet SRADA. The inlet SRADA sends control signals to the exit SRADA. The exit SRADA sends fault signals to the inlet SRADA.

When you do BITE on the IASC, the inlet SRADA sends fault signals to the IASC.

Pack Temperature Control Valves (Normal and Standby)

The temperature control valves control the discharge temperature of the air conditioning packs.

The temperature control valve is the normal valve for control of pack output temperature

The standby temperature control valve does these functions:

- · Controls pack output temperature if the normal system components fail
- Operates to prevent icing in the condenser.

21-60-00

AIR CONDITIONING - TEMPERATURE CONTROL - GENERAL DESCRIPTION

Trim Air Pressure Regulating and Shutoff Valve

The trim air pressure regulating and shutoff valve does these functions:

- · Controls airflow to the zone trim air modulating and shutoff valves
- Controls the pressure of the airflow to the zone trim air modulating valves.

Zone Trim Air Modulating Valves

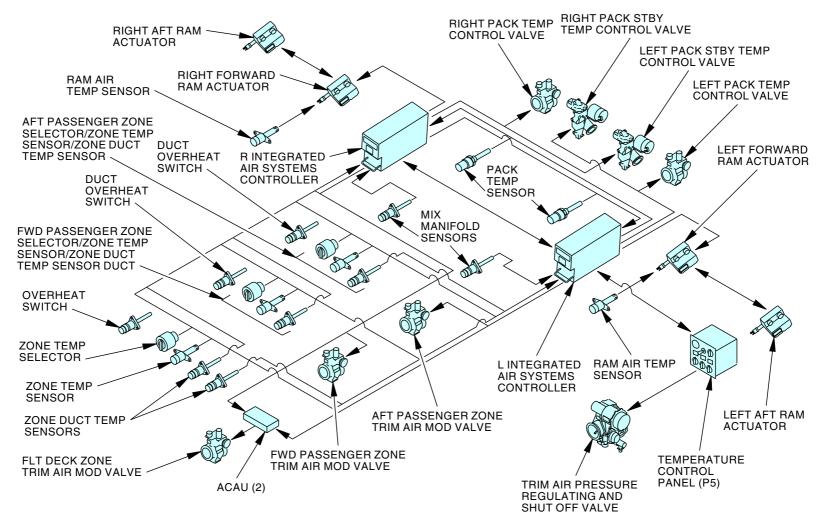
The zone trim air modulating valves control the trim air flow to the three air conditioning zones. Hot trim air goes to the zones that have hotter demands.

Zone Trim Air Mufflers

The forward zone trim air muffler reduces the amount of air distribution noise that is sent to the forward air conditioning zone. The aft zone trim air muffler reduces the amount of air distribution noise that is sent to the aft air conditioning zones.

Duct Overheat Switch

The duct overheat switch provides overheat protection of the supply ducts. When the supply duct temperature is 190°F (88°C), the switch energizes a relay in the ACAU. The relay closes the trim air modulating valve.


EFFECTIVITY

21-60-00

SIA ALL

AIR CONDITIONING - TEMPERATURE CONTROL - GENERAL DESCRIPTION

2368453 S00061517437_V3

AIR CONDITIONING - TEMPERATURE CONTROL - GENERAL DESCRIPTION

SIA ALL EFFECTIVITY 21-60-00

737-7/8/8200/9/10 SYSTEM DESCRIPTION SECTION

AIR CONDITIONING - TEMPERATURE CONTROL - OPERATION

General

The temperature controls panel is the air conditioning indication and control interface for the flight crew.

The temperature controls panel has these features:

- Temperature selectors (3)
- Duct overheat lights (3)
- · Trim air switch
- · Temperature indicator
- Air temperature source selector.

Temperature Selectors

The three flight crew temperature selectors give automatic temperature control for their related zones.

The selector has these temperature setpoints:

- C (cool) sets a temperature of 65°F (18°C)
- W (warm) sets a temperature of 85°F (30°C)
- Intermediate selector positions set proportionate temperature.

Turn the selector to the OFF position to close the related trim air modulating valve.

ZONE TEMP Light

The three ZONE TEMP lights turn on for overtemperature or control channel failures.

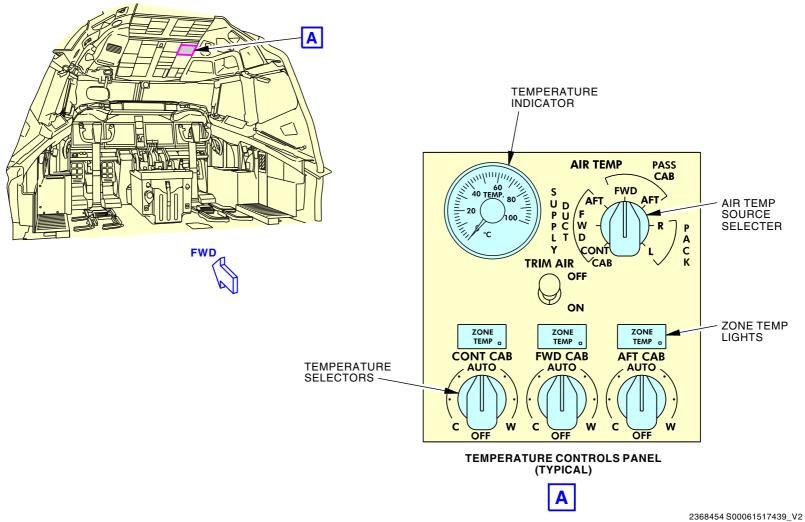
Trim Air Switch

EFFECTIVITY

The trim air switch controls the trim air pressure regulating and shutoff valve. It has these two positions:

• ON - The trim air pressure regulating and shutoff valve opens. Zone trim air channels in the integrated air systems controllers are enabled.

• OFF - The trim air pressure regulating and shutoff valve closes. Zone trim air channels in the integrated air systems controllers are disabled.


Temperature Indicator and Air Temperature Source Selector

The temperature indicator shows the temperature at the location selected with the air temperature source selector. These are the positions:

- SUPPLY DUCT Selects related zone supply duct temperature
- PASS CABIN Selects FWD or AFT passenger cabin temperature
- PACK Selects water extractor discharge temperature (pack temperature).

AIR CONDITIONING - TEMPERATURE CONTROL - OPERATION

AIR CONDITIONING - TEMPERATURE CONTROL - OPERATION

SIA ALL

EFFECTIVITY

AIR CONDITIONING - TEMPERATURE CONTROL - CABIN TEMPERATURE SENSOR ASSEMBLY

Purpose

The cabin temperature sensor assembly provides a flow of filtered air over a cabin temperature sensor and bulb. The cabin temperature sensor provides compartment temperature data to the integrated air systems controllers.

Location

The flight compartment cabin temperature sensor assembly is in the ceiling of the flight compartment.

There are two passenger cabin temperature sensor assemblies in the right side of the passenger cabin. They are each on a panel above the seats and between the PSUs.

Physical Description

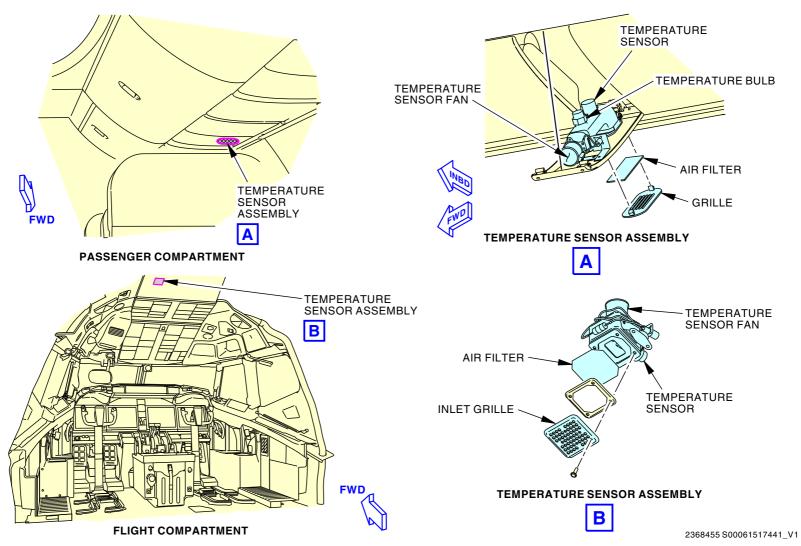
These components are part of the cabin temperature sensor assembly:

- Cabin temperature sensor
- · Inlet grille
- · Air filter
- Temperature sensor fan

The cabin temperature sensor has two sensing elements.

Functional Description

The fan pulls in cabin air through the inlet grille and air filter. The cabin temperature sensor elements send the air temperature to the integrated air systems controllers. The integrated air systems controllers use this data to compare with the cabin temperature selectors.


EFFECTIVITY

21-60-00

737-7/8/8200/9/10 SYSTEM DESCRIPTION SECTION

AIR CONDITIONING - TEMPERATURE CONTROL - CABIN TEMPERATURE SENSOR ASSEMBLY

AIR CONDITIONING - TEMPERATURE CONTROL - CABIN TEMPERATURE SENSOR ASSE

SIA ALL

21-60-00

Page 11 Sep 15/2021

AIR CONDITIONING - TEMPERATURE CONTROL - DUCT TEMPERATURE SENSOR

Purpose

The duct temperature sensor gives duct temperature feedback to the integrated air systems controllers.

Location

There is a flight compartment duct temperature sensor and a backup duct temperature sensor. They are in the EE compartment on the left side adjacent to the E2 rack.

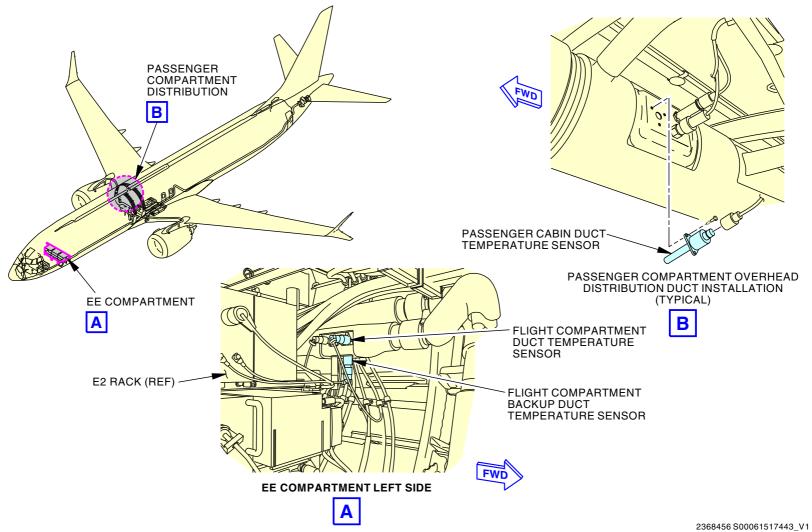
There is a forward and an aft passenger cabin duct temperature sensor. The forward cabin duct temperature sensor is in the overhead duct forward of the left forward riser. The aft passenger cabin duct temperature sensor is in the overhead duct aft of the right riser.

Physical Description

The duct temperature sensor is a single element sensor.

Functional Description

The duct temperature sensor sends the duct temperature to the integrated air systems controller. The integrated air systems controller uses this data to compare with a cabin temperature selector and cabin temperature sensor.


EFFECTIVITY

21-60-00

SIA ALL

AIR CONDITIONING - TEMPERATURE CONTROL - DUCT TEMPERATURE SENSOR

AIR CONDITIONING - TEMPERATURE CONTROL - DUCT TEMPERATURE SENSOR

_

SIA ALL

AIR CONDITIONING - TEMPERATURE CONTROL - INTEGRATED AIR SYSTEMS CONTROLLER

Purpose

The integrated air systems controllers do these functions:

- · Control their air conditioning pack
- Give automatic standby control to the opposite air conditioning pack
- Control two zone trim air control channels
- Get fault data from the Smart Ram Air Door Actuator (SRADA)
- Interface with the onboard maintenance function for BITE.

Location

The integrated air systems controllers are in the EE compartment on the E3-3 rack.

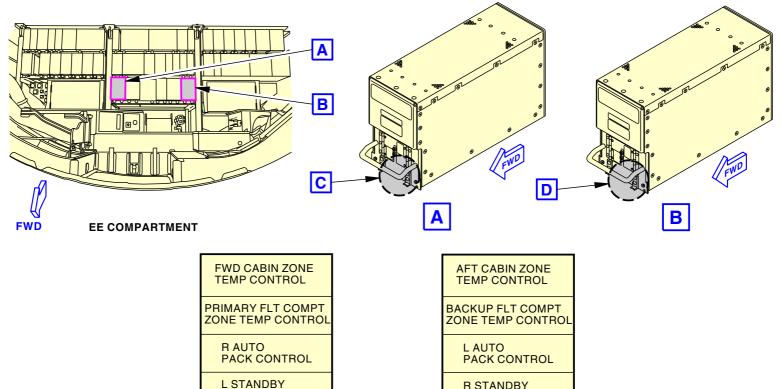
General Description

The integrated air systems controllers are identical and interchangeable. Their pin interface with the rack identifies them to the airplane systems.

Each integrated air systems controller has these control channels:

- · Flight compartment zone temperature control channel
- · Passenger cabin zone temperature control channel
- Auto pack temperature control channel
- Standby pack temperature control channel
- · Inlet SRADA BITE and fault data.

Each SRADA has internal control and fault monitoring circuits. The IASC does not control the SRADAs. The inlet SRADA gets BITE initialization signals from the IASC. The inlet SRADA can send this data to the IASC:


- Inlet SRADA fault
- Exit SRADA fault
- · Ram air temperature sensor fault.

21-60-00

AIR CONDITIONING - TEMPERATURE CONTROL - INTEGRATED AIR SYSTEMS CONTROLLER

RIGHT INTEGRATED AIR SYSTEMS CONTROLLER

PACK CONTROL

R INLET SRADA

BITE/FAULT DATA

R STANDBY PACK CONTROL L INLET SRADA BITE/FAULT DATA **LEFT INTEGRATED AIR**

SYSTEMS CONTROLLER

2368457 S00061517445 V3

AIR CONDITIONING - TEMPERATURE CONTROL - INTEGRATED AIR SYSTEMS CONTROLLER

EFFECTIVITY SIA ALL

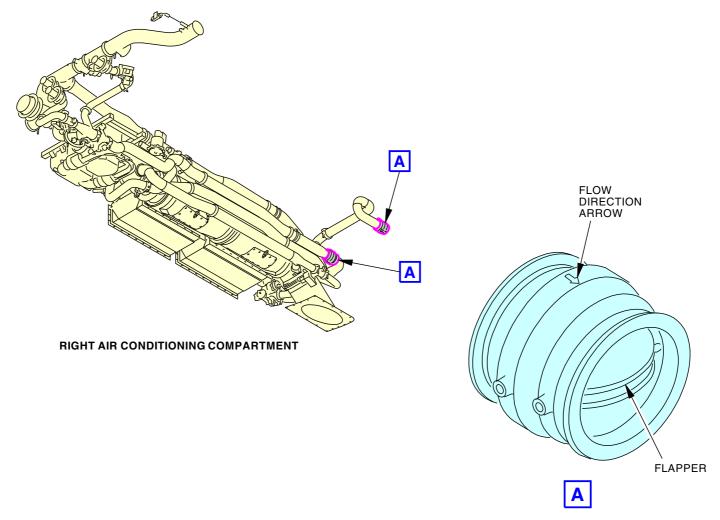
AIR CONDITIONING - TEMPERATURE CONTROL - TRIM AIR CHECK VALVE

Purpose

The trim air check valve prevents reverse airflow in the trim air supply ducts.

Location

There are two trim air check valves. They are in the aft inboard area of the ECS bays.


Physical Description

The trim air check valves are split-flapper type check valves. They have a flow direction arrow cast into their flow bodies.

SIA ALL

AIR CONDITIONING - TEMPERATURE CONTROL - TRIM AIR CHECK VALVE

2368458 S00061517447_V1

AIR CONDITIONING - TEMPERATURE CONTROL - TRIM AIR CHECK VALVE

SIA ALL

737-7/8/8200/9/10 SYSTEM DESCRIPTION SECTION

AIR CONDITIONING - TEMPERATURE CONTROL - TRIM AIR PRESSURE REGULATING AND SHUTOFF VALVE

Purpose

The trim air pressure regulating and shutoff valve controls the flow and pressure of air to the zone trim air modulating valves.

Location

The trim air pressure regulating and shutoff valve is in the right air conditioning compartment.

Physical Description

The trim air pressure regulating and shutoff valve is a modulating and shutoff butterfly-type valve. The valve is spring-loaded to the closed position. It is electrically controlled and pneumatically actuated.

The valve has these parts:

- Solenoid valve assembly
- · Actuator assembly
- · Servo regulator assembly
- Manual override cam and position indicator
- Electrical connector.

Functional Description

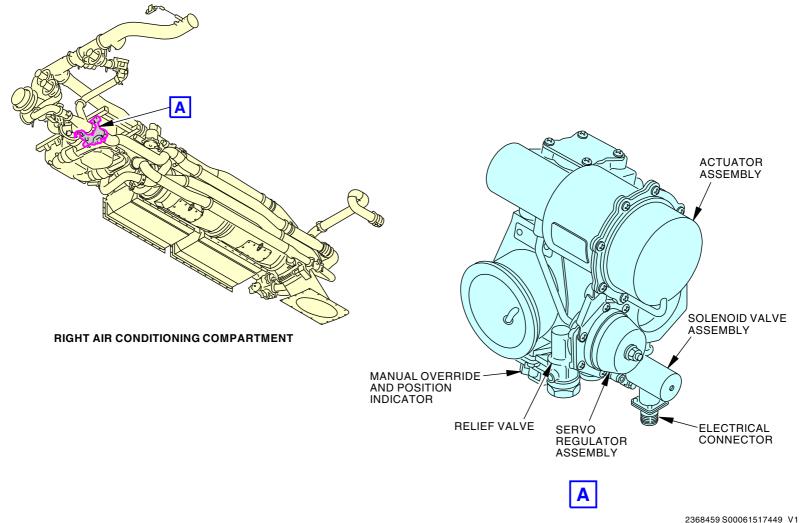
The trim air pressure regulating and shutoff valve is the master trim air valve. It supplies trim air to the three zone trim air modulating valves. If the trim air pressure regulating and shutoff valve is closed, the three zone trim air systems are mechanically and electrically disabled.

The valve is spring loaded-closed. When the control solenoid is energized, it sends upstream pressure to the valve actuator. Pressure in the actuator opens the valve. The servo regulator moves the valve to keep pressure downstream of the valve 4.0 psi above airplane cabin altitude. This prevents pressure variation due to various flow demands of the zone trim air modulating valves.

When the control solenoid de-energizes, it bleeds off the actuator pressure. The trim air pressure regulating and shutoff valve spring then pushes the valve closed.

Put the TRIM AIR switch to ON to open the trim air pressure regulating and shutoff valve. This also enables the zone trim air channels in the integrated air systems controllers.

Put the TRIM AIR switch to OFF to close the trim air pressure regulating and shutoff valve. This also disables the zone trim air system.


EFFECTIVITY

21-60-00

SIA ALL

AIR CONDITIONING - TEMPERATURE CONTROL - TRIM AIR PRESSURE REGULATING AND SHUTOFF VALVE

AIR CONDITIONING - TEMPERATURE CONTROL - TRIM AIR PRESSURE REGULATING AND SHUTOFF VALVE

EFFECTIVITY

21-60-00

21-60-00-008

AIR CONDITIONING - TEMPERATURE CONTROL - TRIM AIR PRSOV - FUNCTIONAL DESCRIPTION

Functional Description

· Servo regulator.

The trim air pressure regulator and shutoff valve (PRSOV) gets unregulated air from the flow control and shut off valves (FCSOV).

The unregulated air goes to these components:

- Solenoid valve
- · Relief valve
- Servo regulator (chamber A).

The servo regulator decreases the unregulated air to a constant control pressure.

The relief valve prevents damage to the pneumatic actuator if the servo regulator fails.

The solenoid valve controls the flow of control air to chamber B. Control air to chamber B opens the trim air PRSOV. Air then flows to the downstream sense port.

The downstream sense port supplies bleed air to the following:

- Chamber C
- Chamber D

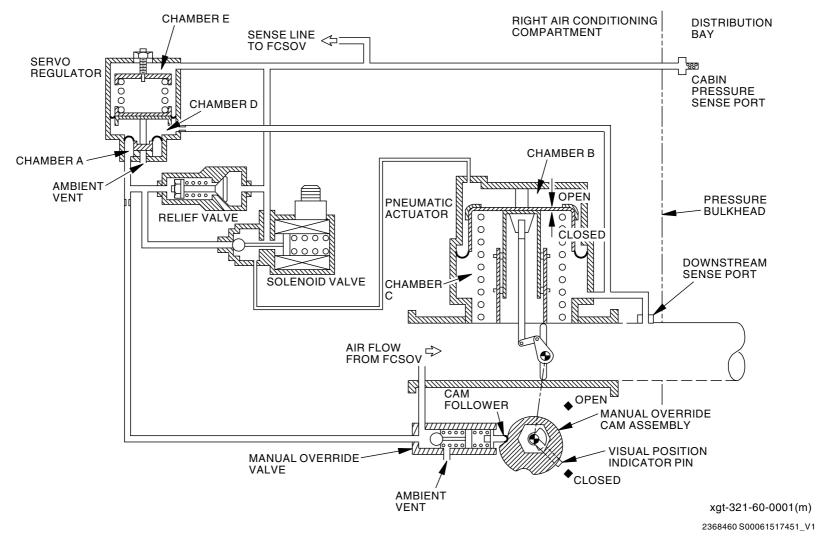
Bleed air in chamber C helps the actuator spring control the trim air PRSOV.

Bleed air in chamber D acts against cabin pressure and a spring in chamber E. This action controls the control air to chamber B. When the pressure in chamber B increases, the trim air PRSOV opens more. When pressure in chamber B decreases, the trim air PRSOV moves toward closed.

<u>NOTE</u>: The cabin sense port supplies cabin pressure to the FCSOV to control flow.

When you turn the manual override cam assembly, the manual override cam assembly moves the cam follower to close the manual override valve. This will shutoff unregulated air to these components:

- Solenoid valve
- Relief valve


SIA ALL

EFFECTIVITY

21-60-00

AIR CONDITIONING - TEMPERATURE CONTROL - TRIM AIR PRSOV - FUNCTIONAL DESCRIPTION

AIR CONDITIONING - TEMPERATURE CONTROL - TRIM AIR PRSOV - FUNCTIONAL DESCRIPTION

SIA ALL EFFECTIVITY

D633AM102-SIA

Page 21 Sep 15/2021

AIR CONDITIONING - TEMPERATURE CONTROL - ZONE TRIM AIR MODULATING VALVE

Purpose

There are three zone trim air modulating valves. Each zone valve controls the flow of trim air to its related air conditioning zone:

- · Flight compartment zone
- · Forward passenger compartment zone
- · Aft passenger compartment zone.

Location

The flight compartment zone trim air modulating valve is in the left air conditioning compartment.

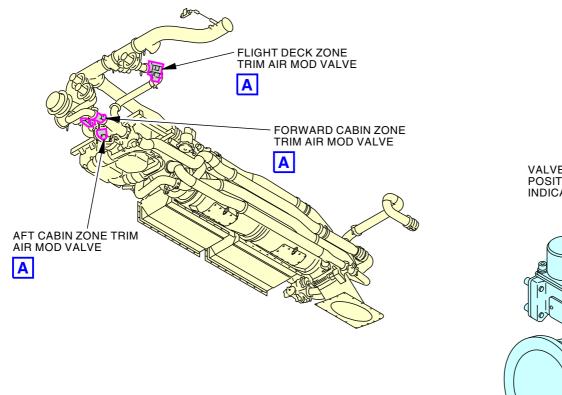
The forward and aft zone trim air modulating valves are in the right air conditioning compartment.

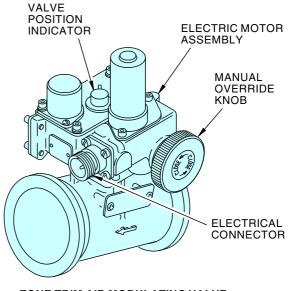
Physical Description

The zone trim air modulating valves are electric motor-driven single plate butterfly valves. They are identical and interchangeable.

The valves have these parts:

- Electric motor assembly
- Position indicator
- · Manual override knob
- · Electrical connector.


Functional Description


The valves use 115v ac power. The valve drive signals come from the integrated air systems controllers. A mechanical gear train with a slip clutch transfers motor motion to the valve.

21-60-00

AIR CONDITIONING - TEMPERATURE CONTROL - ZONE TRIM AIR MODULATING VALVE

ZONE TRIM AIR MODULATING VALVE (EXAMPLE)

2368461 S00061517453_V1

AIR CONDITIONING - TEMPERATURE CONTROL - ZONE TRIM AIR MODULATING VALVE

SIA ALL

BOEING

737-7/8/8200/9/10 SYSTEM DESCRIPTION SECTION

AIR CONDITIONING - TEMPERATURE CONTROL - FLIGHT COMPARTMENT - FUNCTIONAL DESCRIPTION

Normal Function

When the trim air switch is in the ON position and the flight compartment temperature selector is in AUTO, the flight compartment trim air modulating valve connects to the right integrated air systems controller. This sends an enable signal to the two controllers to start control of the flight compartment temperature.

The selected zone temperature goes to the right integrated air systems controller and is compared with the actual temperature in the flight compartment. The difference makes a zone duct temperature demand. It is limited to 35°F to 145°F (2°C to 63°C). This demand is compared with the actual supply duct temperature and the difference is used to move the flight compartment trim air modulating valve.

The alternate power relay (K21) supplies electrical power from one of two different sources. When K21 energizes, 28v dc is from bus 1. When K21 deenergizes, 28v dc is from the battery bus.

Non-Normal Function - System Overheat

When the temperature in the duct is 190°F (88°C), the duct overheat switch closes. This energizes the K6 flight deck zone overheat relay to the overheat position. When K6 is in the overheat position, K4 energizes to the close position, and the flight deck zone trim air modulating valve closes.

Non-Normal Function - Failure

The FAULT and INOP switches are set by these primary flight compartment component failures:

- Cabin temperature sensor
- Cabin temperature sensor interface
- Duct temperature sensor
- Duct temperature sensor interface
- Cabin temperature selector
- · Cabin temperature selector interface
- Zone trim air modulating valve
- Zone trim air modulating valve driver.

When the FAULT switch is set, K3 relaxes. This connects the backup flight compartment zone control to the flight compartment zone trim air valve. The backup flight compartment zone control controls the flight compartment trim air modulating valve with the same logic as the primary flight compartment zone control.

The backup FAULT switch is set by these backup flight compartment component failures:

- · Cabin temperature sensor
- · Cabin temperature sensor interface
- Duct temperature sensor
- · Duct temperature sensor interface
- · Cabin temperature selector
- Cabin temperature selector interface
- · Zone trim air modulating valve
- · Zone trim air modulating valve driver.

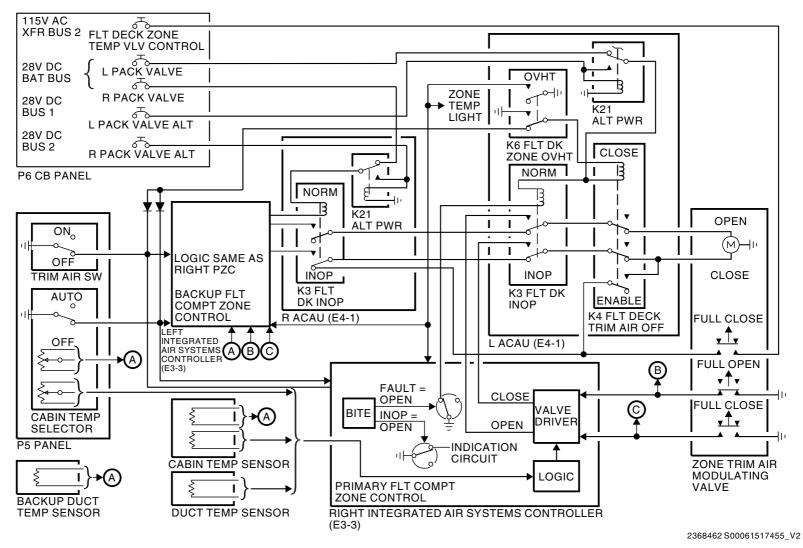
The backup INOP switch is set by these backup flight compartment component failures:

- · Cabin temperature sensor
- · Cabin temperature sensor interface
- Cabin temperature selector
- Cabin temperature selector interface.

NOTE: Failure of the temperature selector causes a default to a 75°F (24°C) set point.

When the primary and backup flight compartment zone controls fail, the zone temperature control system is off. This off signal goes to the pack control section of the integrated air systems controllers. The left integrated air systems controller controls the left pack to satisfy the flight compartment zone duct demand. The right integrated air systems controller controls the right pack to satisfy the coolest temperature requirements for the passenger compartments.

21-60-00


EFFECTIVITY

SIA ALL

21-60-00-011

AIR CONDITIONING - TEMPERATURE CONTROL - FLIGHT COMPARTMENT - FUNCTIONAL DESCRIPTION

AIR CONDITIONING - TEMPERATURE CONTROL - FLIGHT COMPARTMENT - FUNCTIONAL DESCRIPTION

SIA ALL D633AM102-SIA

Page 25 Sep 15/2021

737-7/8/8200/9/10 SYSTEM DESCRIPTION SECTION

AIR CONDITIONING - TEMPERATURE CONTROL - PASSENGER COMPARTMENT - FUNCTIONAL DESCRIPTION

Normal Function

When the trim air switch is in the ON position and the passenger compartment temperature selector is in AUTO, the passenger compartment trim air modulating valve connects to the right integrated air systems controller.

The alternate power relay (K21) supplies electrical power from one of two different sources. When K21 energizes, 28v dc is from bus 1. When K21 deenergizes, 28v dc is from the battery bus.

The selected zone temperature goes to the integrated air systems controller and is compared with the actual temperature in the passenger compartment. The difference makes a zone duct temperature demand. The limits are 35°F to 160°F (2°C to 71°C). This demand is compared with the actual supply duct temperature and the difference is used to move the passenger compartment trim air modulating valve.

Non-Normal Function - System overheat

When the temperature in the duct is 190°F (88°C), the duct overheat switch closes. This energizes K1 passenger zone overheat relay to the overheat position. When K1 is in the overheat position, K2 passenger trim air off relay energizes to the close position and the passenger zone trim air modulating valve closes.

Non-Normal Function - System Failure

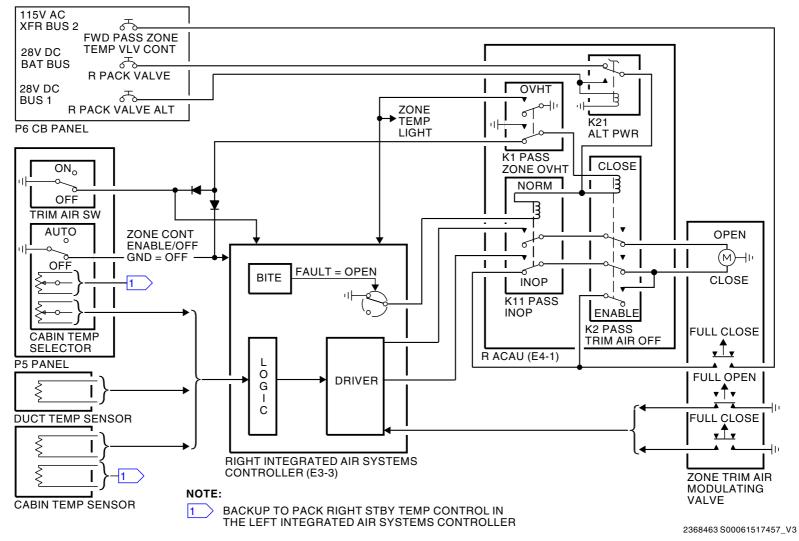
The FAULT switch is set by these passenger compartment failures:

- Cabin temperature sensor
- · Cabin temperature sensor interface
- Duct temperature sensor
- Duct temperature sensor interface
- Cabin temperature selector
- · Cabin temperature selector interface
- · Zone trim air modulating valve

EFFECTIVITY

· Zone trim air modulating valve driver.

NOTE: Failure of the temperature selector causes a default to a 75°F (24°C) set point.


These failures cause K11 passenger INOP relay to relax and command the passenger zone trim air modulating valve to close.

21-60-00

21-60-00-012

AIR CONDITIONING - TEMPERATURE CONTROL - PASSENGER COMPARTMENT - FUNCTIONAL DESCRIPTION

AIR CONDITIONING - TEMPERATURE CONTROL - PASSENGER COMPARTMENT - FUNCTIONAL DESCRIPTION

SIA ALL

D633AM102-SIA

ECCN 9E991 BOEING PROPRIETARY - See title page for details

AIR CONDITIONING - TEMPERATURE CONTROL - DUCT OVERHEAT SWITCH

Purpose

The duct overheat switch sends an overheat signal to close the trim air modulating valve. Also, it sends a signal to turn on the ZONE TEMP light.

Location

The flight compartment duct overheat switch is in the EE compartment on the left side adjacent to the E2 rack.

There is a forward and an aft passenger cabin duct overheat switch. The forward cabin duct overheat switch is in the overhead duct forward of the left forward riser. The aft passenger cabin duct overheat switch is in the overhead duct aft of the right aft riser.

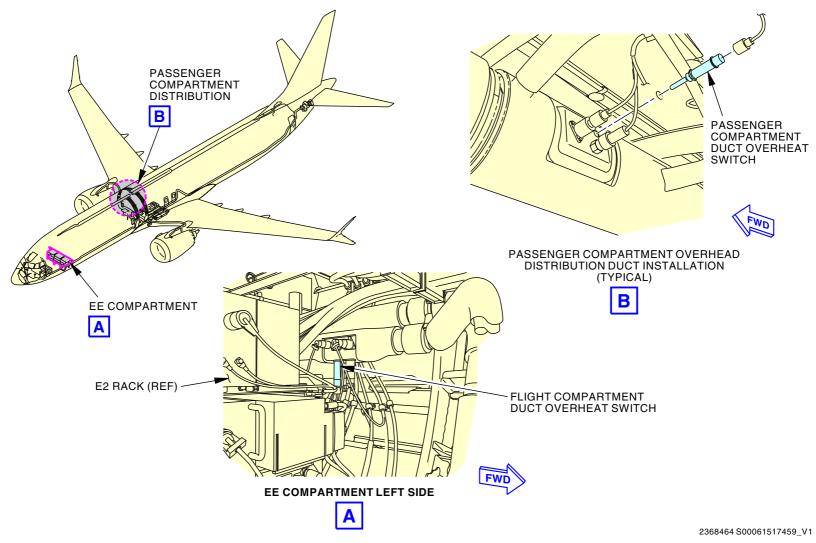
Physical Description

The duct overheat switch is vapor pressure actuated switch. The duct overheat switch has these parts:

- Probe
- · Electrical connector

Functional Description

EFFECTIVITY


When the temperature in the duct is 190°F (88°C), a liquid in the probe creates a vapor. The vapor in the probe operates a spring that operates an electrical switch. This energizes a relay in the air conditioning accessory unit. The relay turns on the ZONE TEMP light and closes the trim air modulating valve.

21-60-00

SIA ALL

AIR CONDITIONING - TEMPERATURE CONTROL - DUCT OVERHEAT SWITCH

AIR CONDITIONING - TEMPERATURE CONTROL - DUCT OVERHEAT SWITCH

21-60-00

21-60-00-013

SIA ALL

EFFECTIVITY

THIS PAGE IS INTENTIONALLY LEFT BLANK

AIR CONDITIONING - TEMPERATURE CONTROL - FUNCTIONAL DESCRIPTION

General

The airplane has two cooling packs that convert hot, high pressure air from the engine compressor into cool, low pressure air for the cabin areas. The packs are controlled by two integrated air systems controllers (IASCs). Each IASC has a digital primary channel to control its associated cooling pack, and an analog channel that provides backup control for the opposite cooling pack.

The IASCs also control the trim air system that allows independent temperature control of the flight compartment and passenger cabin. The temperature control system provides independent temperature control in each of these three zones:

- Control Cabin
- Forward Passenger Cabin
- · Aft Passenger Cabin.

The IASCs control the cooling pack outlet temperature to match the zone with the lowest temperature requirement and the trim air system adds heat to the other zones to meet their temperature requirement.

The right IASC provides temperature control for the forward passenger zone and primary temperature control for the flight compartment zone. The left IASC provides temperature control for the aft passenger zone and standby temperature control for the flight compartment zone.

The temperature control system operation is automatic, including automatic reconfiguration of standby and backup functions to maintain temperature control during failure conditions.

Control

SIA ALL

The temperature controls and indications for the flight compartment (CONT CAB), forward passenger compartment (FWD CAB), and the aft passenger compartment (AFT CAB) are located on the cabin temperature control panel, P5.

Three temperature selector switches allow different temperature settings for each zone. The temperature signal from the selector switch goes to the IASC. The IASC compares the requested zone temperature setting to the actual temperature values from the zone, duct and pack temperature sensors. Each temperature selector switch also has an OFF position that removes trim air from the associated zone.

The TRIM AIR switch is in the ON position for normal operation. Putting the TRIM AIR switch in the OFF position disables the trim air supply to all zones.

Operation

The temperature control system operates when the pack Flow Control and Shutoff Valve is open and there are no critical fault conditions. The air conditioning accessory units (ACAU) provide the discrete outputs that enable or disable operation of the cooling pack and the temperature control system components.

The TRIM AIR switch is in the ON position for normal operation. This causes the Trim Air Pressure Regulating and Shutoff Valve (PRSOV) to open and regulate the pressure in the trim air ducts to approximately 4 psi above the cabin pressure. Putting the TRIM AIR switch in the OFF position closes the Trim Air PRSOV to disable the trim air supply to all zones.

The temperature selector switches allow a range of desired temperature settings from approximately 65°F to 85°F (18°C to 29°C). There is also an OFF position for each temperature selector switch that closes the associated zone trim air modulating valve to remove the trim air supply from the zone.

For normal operation, the IASC calculates the correct pack outlet temperature for the zone with the lowest temperature setting. Both packs are controlled to provide the pack outlet temperature that matches the zone with the lowest setting. Hot trim air is supplied to the other two zones by the trim air modulating valves to increase the supply duct air temperature to match the desired zone temperature.

EFFECTIVITY

21-60-00

Page 31

BOEING

737-7/8/8200/9/10 SYSTEM DESCRIPTION SECTION

AIR CONDITIONING - TEMPERATURE CONTROL - FUNCTIONAL DESCRIPTION

If the IASC detects a fault associated with the flight compartment trim air supply, then the trim air system operates in the split packs mode. In this mode, the left pack outlet temperature is controlled to match the temperature setting for the flight compartment and the right pack outlet temperature is controlled to match the lower of the temperature settings for the forward and aft passenger compartments. Hot trim air is supplied to the other passenger cabin zone to increase its supply duct air temperature to match the desired zone temperature.

If the IASC detects a fault associated with the passenger cabin trim air supply, or if the trim air supply is selected off, then the trim air system operates in the average zone mode. In this mode, the left pack outlet temperature is controlled to match the temperature setting for the flight compartment and the right pack outlet temperature is controlled to match the average of the temperature settings for the forward and aft passenger compartments. Trim air is commanded off.

Each IASC provides the following functions:

- Control of the pack outlet temperature by positioning the temperature control valve (TCV)
- Standby control of the opposite pack outlet temperature by positioning the standby TCV
- Control of the pack compressor temperature by modulating the ram air flow
- Control of the cabin zone temperature to values between 65°F and 85°F (18°C to 29°C)
- Control of the zone supply duct temperature to values between 35°F and 145°F (2°C and 63°C)
- Automatic reconfiguration of standby and backup functions for fault conditions
- Automatic fault detection and fault isolation of associated components (BITE)
- Output of system status information for display on the P5 temperature control panel.

Indication

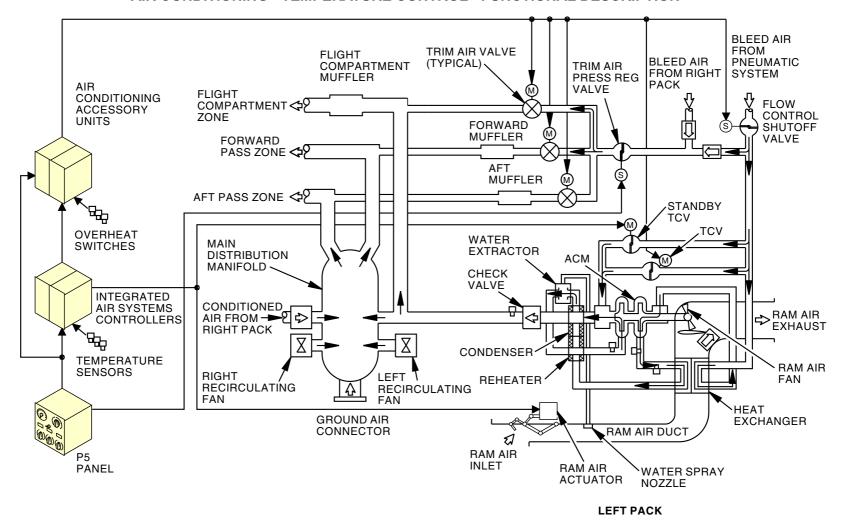
The TEMP (temperature) indicator can show the temperature in any of these areas:

- Control cabin supply duct
- · Forward passenger cabin supply duct
- · Aft passenger cabin supply duct
- Forward cabin zone
- · Aft passenger cabin zone
- · Left pack outlet
- Right pack outlet.

The AIR TEMP selector switch connects different temperature sensors to the indicator to provide the desired indication.

If the temperature in a zone distribution duct is more than 190°F (88°C), the duct overheat switch sends a signal to the ACAU. The ACAU sends a signal to activate the ZONE TEMP light on the P5 temperature control panel and commands the TCV to the full cold position (closed).

EFFECTIVITY


21-60-00

SIA ALL

Page 32

AIR CONDITIONING - TEMPERATURE CONTROL - FUNCTIONAL DESCRIPTION

2368465 S00061517461_V2

AIR CONDITIONING - TEMPERATURE CONTROL - FUNCTIONAL SCHEMATIC

SIA ALL
D633AM102-SIA

21-60-00

Page 33 Sep 15/2021

AIR CONDITIONING - TEMPERATURE CONTROL - BALANCED MODE - FUNCTIONAL DESCRIPTION

General Description

The temperature control system controls the temperature in three airplane air conditioning zones:

- Flight compartment
- · Forward passenger compartment
- · Aft passenger compartment.

The temperature control system is automatic. The flight crew makes the necessary selections on the temperature controls panel to operate the system.

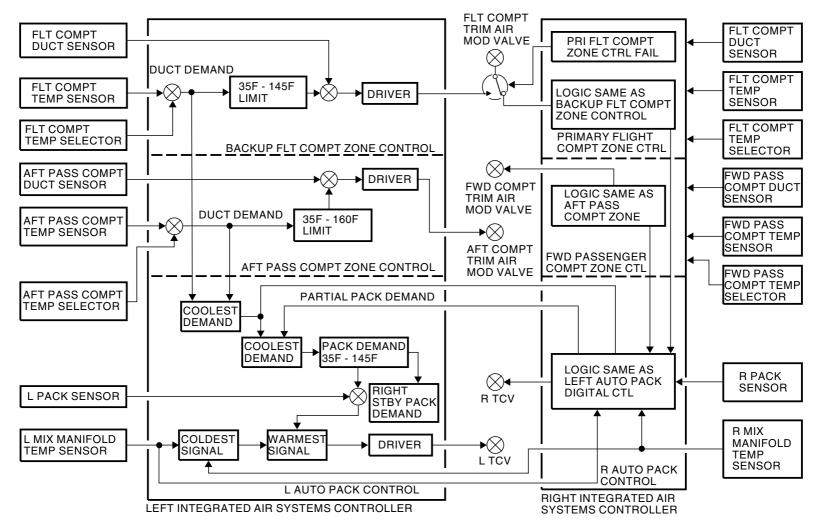
During operation, the integrated air systems controllers control pack discharge temperature to the requirements of the zone that requires the most cooling. They control the temperature control valves to control the pack discharge temperature. Both packs output the same temperature. This is called balanced mode.

The integrated air systems controllers control the trim air modulating valves to inject hot trim air into the ducts of the other zones. This increases the temperature of the air supply to the three zones.

Functional Description

In the compartment zone temperature controls, the integrated air systems controllers compare the compartment temperature selections with the temperature in the zone. The error signal from this comparison is called DUCT DEMAND. This signal is used for two purposes. It is used in the zone temperature controls to control the trim air modulating valves. Also, it is used in the auto pack controls to control the temperature control valves.

The DUCT DEMAND signal has a 35°F(2°C) to 145°F(63°C) temperature limit for the flight compartment duct and a 35°F(2°C) to 160°F(71°C) for the passenger compartment duct. It is compared with the temperature in the duct and the result is used to control the trim air modulating valves.


The DUCT DEMAND signal from the compartment zone temperature controls are compared in the auto pack controls to find the coolest demand of the zones. This signal is called PARTIAL PACK DEMAND. The PARTIAL PACK DEMAND is shared between the two integrated air systems controllers and compared to find the coolest signal. This signal is called PACK DEMAND and has a 35°F(2°C) to 145°F(63°C) temperature limit. The PACK DEMAND is used to control the temperature control valves in each of the packs. It is also used as the STANDBY PACK DEMAND signal for the other pack in case of a failure. The mix manifold temperature sensors provide feedback to the auto pack controls. They are used to prevent ice in the mix manifold.

21-60-00

EFFECTIVITY

AIR CONDITIONING - TEMPERATURE CONTROL - BALANCED MODE - FUNCTIONAL DESCRIPTION

2368466 S00061517463_V2

AIR CONDITIONING - TEMPERATURE CONTROL - BALANCED MODE - FUNCTIONAL DESCRIPTION

SIA ALL EFFECTIVITY

D633AM102-SIA

Page 35 Sep 15/2021

AIR CONDITIONING - TEMPERATURE CONTROL - UNBALANCED MODE - FUNCTIONAL DESCRIPTION

General Description

The unbalanced mode is when the flight compartment trim air system fails or the trim air switch is OFF.

There are two unbalanced modes of operation:

- Unbalanced
- · Unbalanced average.

Unbalanced

The right pack is controlled to satisfy the colder demand of the two passenger compartment temperature zones. The left pack is controlled to satisfy only the temperature requirements of the flight compartment.

The backup flight compartment cabin temperature sensor and cabin temperature selector provide the pack demand signal to the left auto pack control.

The backup flight compartment duct temperature sensor signal is used to provide a 35°F(2°C) limit in the flight compartment duct.

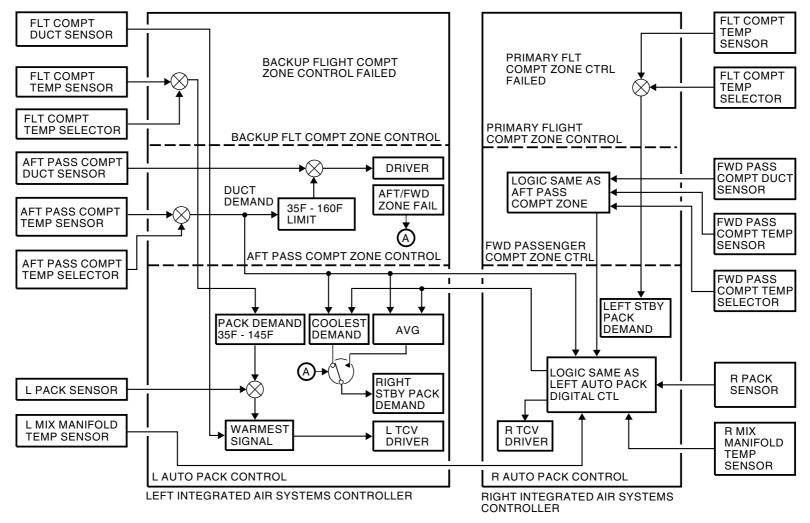
The primary flight compartment cabin temperature sensor and cabin temperature selector provide the standby pack demand signal to the right auto pack control.

Unbalanced Average Mode

The unbalanced average mode of operation is activated if the trim air switch is OFF or if either of the passenger compartment temperature zones fail.

This mode is the same as the unbalanced mode except for the right pack. The right pack is controlled to satisfy the average temperature requirements of the two passenger compartment temperature zones.

EFFECTIVITY


21-60-00

SIA ALL

Page 36

AIR CONDITIONING - TEMPERATURE CONTROL - UNBALANCED MODE - FUNCTIONAL DESCRIPTION

2368467 S00061517465_V2

AIR CONDITIONING - TEMPERATURE CONTROL - UNBALANCED MODE - FUNCTIONAL DESCRIPTION

SIA ALL

EFFECTIVITY

D633AM102-SIA

THIS PAGE IS INTENTIONALLY LEFT BLANK

BOEING

737-7/8/8200/9/10 SYSTEM DESCRIPTION SECTION

AIR CONDITIONING - TEMPERATURE CONTROL - ZONE TEMP INDICATION - FUNCTIONAL DESCRIPTION

Purpose

The system provides an indication of an overheat condition in the zone supply ducts or the failure of the temperature control system.

Power Interruption

Power interruption indication is provided by two power interrupt indication relays, K1 and K2.

If there is a power interruption, the ZONE TEMP light on the P5 panel comes on immediately. The zone temperature control system is reset after power has been restored.

Overheat Indication

Overheat protection is provided by overheat switches in the flight compartment supply duct and in the supply ducts for the passenger cabin.

If there is an overheat condition, the ZONE TEMP light on the P5 panel comes on immediately. Push the TRIP RESET switch on the P5 panel after the duct has cooled to reset the zone temperature control system.

Flight Compartment Temperature Control System Failure Indication

A failure of the primary or backup flight compartment temperature control or a malfunction in the system causes a STATUS message with a MAINT light or a Scheduled Maintenance Task (SMT) message on the MAX Display System (MDS). This shows that a BITE check of the controllers is necessary.

If there is a complete loss of temperature control for the flight compartment, the ZONE TEMP light comes on immediately and cannot be reset.

The primary flight compartment INOP switch is set by these primary flight compartment failures:

- · Cabin temperature sensor
- Cabin temperature sensor interface
- Duct temperature sensor
- Duct temperature sensor interface

- · Cabin temperature selector
- Cabin temperature selector interface
- Zone trim air modulating valve
- · Zone trim air modulating valve driver.

The backup flight compartment INOP switch is set by these backup flight compartment failures:

- · Cabin temperature sensor and selector
- Cabin temperature sensor interface and selector
- Cabin temperature sensor and selector interface
- Cabin temperature sensor interface and selector interface.

The backup flight compartment FAULT switch is set by these backup flight compartment failures:

- Cabin temperature sensor
- · Cabin temperature sensor interface
- · Duct temperature sensor
- · Duct temperature sensor interface
- · Cabin temperature selector
- Cabin temperature selector interface
- Zone trim air modulating valve
- Zone trim air modulating valve driver.

Passenger Compartment Temperature Control System Failure Indication

A failure of the passenger zone temperature control causes a STATUS message with a MAINT light or a SMT message on the MDS. This shows that a BITE check of the controllers is necessary.

The passenger compartment FAULT switch is set by these passenger compartment failures:

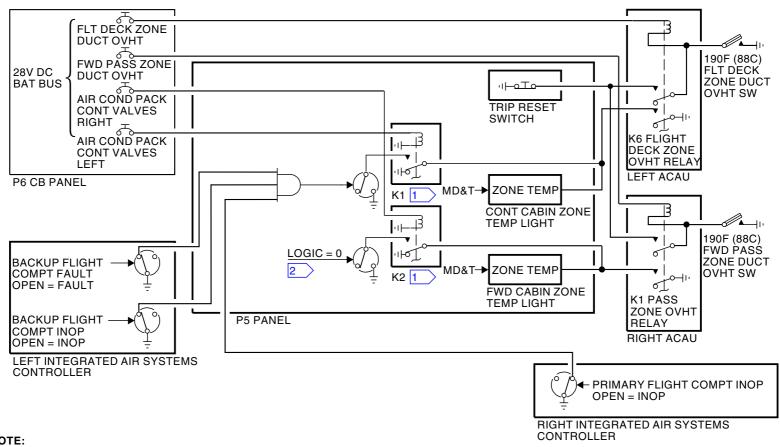
- Cabin temperature sensor
- Cabin temperature sensor interface

21-60-00

EFFECTIVITY

AIR CONDITIONING - TEMPERATURE CONTROL - ZONE TEMP INDICATION - FUNCTIONAL DESCRIPTION

- Duct temperature sensor
- Duct temperature sensor interface
- Cabin temperature selector
- · Cabin temperature selector interface
- · Zone trim air modulating valve
- Zone trim air modulating valve driver.


The backup passenger compartment FAULT switch is set by these backup passenger compartment failures:

- · Cabin temperature sensor
- · Cabin temperature selector
- · Other controller backup error signal output
- Standby pack-cabin loop electronics.

21-60-00

AIR CONDITIONING - TEMPERATURE CONTROL - ZONE TEMP INDICATION - FUNCTIONAL DESCRIPTION

NOTE:

AFT PASS ZONE SIMILAR TO FWD PASS ZONE

POWER INTERRUPT INDICATION RELAYS

737 MAX - FWD/AFT CAB FAULTS ARE NOT CONNECTED TO THE P5 PANEL, FAULT DECISION OUTPUT LOGIC ALWAYS 0.

2368468 S00061517467 V3

AIR CONDITIONING - TEMPERATURE CONTROL - ZONE TEMP INDICATION - FUNCTIONAL DESCRIPTION

EFFECTIVITY SIA ALL

21-60-00

Page 41 Sep 15/2021

AIR CONDITIONING - TEMPERATURE CONTROL - PACK LIGHT INDICATION - FUNCTIONAL DESCRIPTION

Purpose

The pack light turns on for over temperature conditions, and failures of the air conditioning temperature control system.

Power Interruption

Power interruption indication is given by power interrupt indication relays.

If a power interruption is sensed, the PACK light on the P5 panel comes on. The pack temperature control system is reset after power has been restored.

Over Temperature Indication

Over temperature protection for the cooling pack is supplied by these three thermal switches:

- Turbine inlet overheat (210°F/99°C)
- Pack discharge overheat (250°F/121°C)
- Compressor discharge overheat (390°F/198°C).

If an overheat condition is sensed, the PACK light on the P5 panel comes on. Push the TRIP RESET switch on the P5 panel after the cooling pack has cooled to reset the pack temperature control system.

Air Conditioning Packs Temperature Control System Failure indication

A single failure of the pack control system causes a STATUS message with a MAINT light or a Scheduled Maintenance Task (SMT) on the MAX Display System (MDS). This shows a BITE check of the controllers is necessary.

If a complete loss of temperature control for the pack control system occurs, the PACK light comes on and cannot be reset.

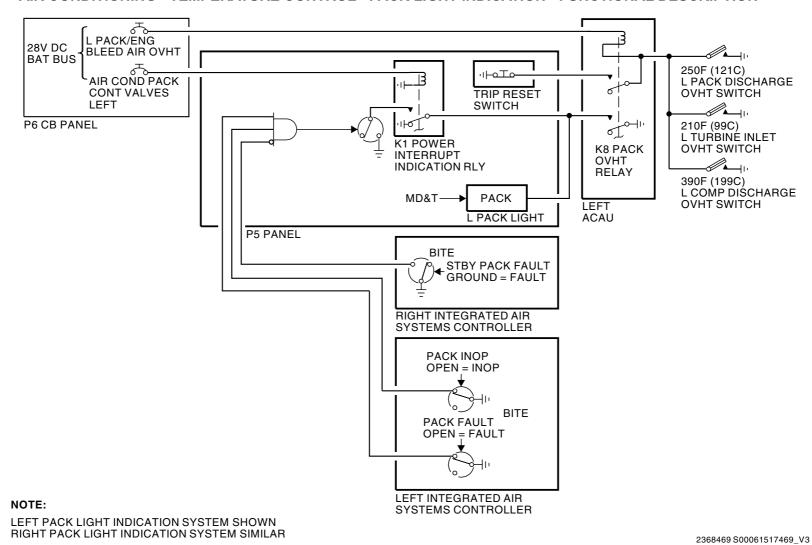
The standby pack FAULT switch is set by these standby pack component failures:

- · Pack temperature sensor
- Temperature control valve

EFFECTIVITY

· Pack control.

The pack INOP and pack FAULT switch is set by these pack component failures:


- · Pack temperature sensor or interface
- Temperature control valve or driver
- · Pack control.

The pack FAULT switch is set by these pack component failures:

- · Mix manifold temperature sensor or interface
- Mix manifold temperature sensor or interface from opposite controller
- · Zone duct demand signal or interface from opposite controller
- Partial pack demand signal or interface from opposite controller
- · Ram air temperature sensor or interface
- Ram air door actuator or interface.

AIR CONDITIONING - TEMPERATURE CONTROL - PACK LIGHT INDICATION - FUNCTIONAL DESCRIPTION

AIR CONDITIONING - TEMPERATURE CONTROL - PACK LIGHT INDICATION - FUNCTIONAL DESCRIPTION

SIA ALL

21-60-00

21-60-00-018

AIR CONDITIONING - TEMPERATURE CONTROL - TEMPERATURE BULB

Purpose

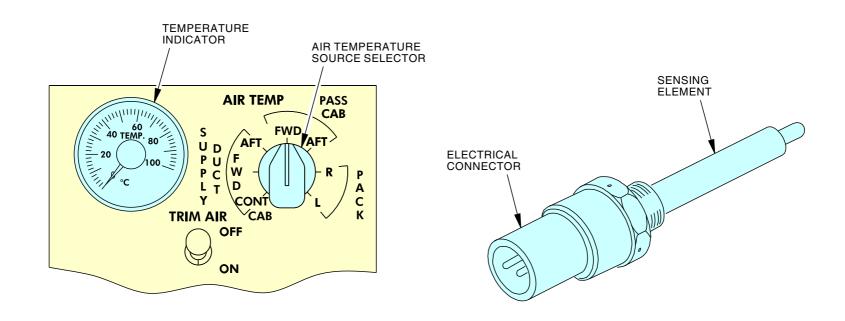
The temperature bulbs measure temperature in the critical areas of the air conditioning system. The temperature bulbs are for indication only and are not part of the automatic temperature control system.

Physical Description

The temperature bulb has these parts:

- Sensing element
- · Electrical connector.

Location


There are seven temperature bulbs in the system. They are similar in design and operation. There are temperature bulbs in these locations:

- The flight compartment air conditioning duct in the EE compartment on the left hand side next to the E2 rack
- The forward passenger cabin air conditioning supply duct in the overhead, forward of the left hand forward riser
- The aft passenger cabin air conditioning supply duct in the overhead, aft of the right hand aft riser
- The forward passenger cabin forward right side of the passenger cabin bullnose area
- The aft passenger cabin aft right side of the passenger cabin bullnose area
- The right air conditioning pack on the right high pressure water separator assembly
- The left air conditioning pack on the left high pressure water separator assembly.

21-60-00

AIR CONDITIONING - TEMPERATURE CONTROL - TEMPERATURE BULB

2368470 S00061517471_V1

AIR CONDITIONING - TEMPERATURE CONTROL - TEMPERATURE BULB

SIA ALL

21-60-00-019

EFFECTIVITY