CHAPTER

30

Ice and Rain Protection

Subject/Page	Date C	Subject/Page	Date	COC
30-EFFECTIVE PAGI	ES	30-11-00 (cont.)		
1 thru 3	Oct 15/2023	11	Oct 15/2021	
4	BLANK	12	Oct 15/2021	
30-CONTENTS		13	Oct 15/2021	
1	Oct 15/2021	14	Oct 15/2021	
R 2	Oct 15/2023	15	Oct 15/2021	
3	Oct 15/2021	16	Oct 15/2021	
4	BLANK	17	Oct 15/2021	
30-00-00		18	Oct 15/2021	
1	Oct 15/2021	19	Oct 15/2021	
2	Oct 15/2021	20	Oct 15/2021	
3	Oct 15/2021	21	Oct 15/2021	
4	Oct 15/2021	22	Oct 15/2021	
5	Oct 15/2021	23	Oct 15/2021	
6	BLANK	24	BLANK	
30-11-00		30-20-00		
1	Oct 15/2021	1	Oct 15/2021	
2	Oct 15/2021	2	Oct 15/2021	
3	Oct 15/2021	3	Oct 15/2021	
4	Oct 15/2021	4	Oct 15/2021	
5	Oct 15/2021	5	Oct 15/2021	
6	Oct 15/2021	6	Oct 15/2021	
7	Oct 15/2021	7	Oct 15/2021	
8	Oct 15/2021	8	Oct 15/2021	
9	Oct 15/2021			
10	Oct 15/2021			

A = Added, R = Revised, D = Deleted, O = Overflow, C = Customer Originated Change

30-EFFECTIVE PAGES

Subject/Page	Date	COC	s	ubject/Page	Date	COC
30-20-00 (cont.)			3(0-30-00 (cont.)		
9	Oct 15/2021			17	Oct 15/2021	
10	Oct 15/2021			18	Oct 15/2021	
11	Oct 15/2021			19	Oct 15/2021	
12	Oct 15/2021			20	BLANK	
13	Oct 15/2021		3	0-41-00		
14	BLANK			1	Oct 15/2021	
30-30-00				2	Oct 15/2021	
1	Oct 15/2021		R	3	Oct 15/2023	
2	Oct 15/2021		R	4	Oct 15/2023	
3	Oct 15/2021		R	5	Oct 15/2023	
4	Oct 15/2021			6	Oct 15/2021	
5	Oct 15/2021			7	Oct 15/2021	
6	Oct 15/2021			8	Oct 15/2021	
7	Oct 15/2021		R	9	Oct 15/2023	
8	Oct 15/2021			10	Oct 15/2021	
9	Oct 15/2021		R	11	Oct 15/2023	
10	Oct 15/2021			12	Feb 15/2022	
11	Oct 15/2021			13	Feb 15/2022	
12	Oct 15/2021		R	14	Oct 15/2023	
13	Oct 15/2021		R	15	Oct 15/2023	
14	Oct 15/2021		R	16	Oct 15/2023	
R 15	Oct 15/2023			17	Feb 15/2022	
16	Oct 15/2021			18	Oct 15/2021	
. •						

A = Added, R = Revised, D = Deleted, O = Overflow, C = Customer Originated Change

30-EFFECTIVE PAGES

S	ubject/Page	Date	COC	Subject/Page	Date	COC
30	0-41-00 (cont.)			30-43-00		
R	19	Oct 15/2023		1	Oct 15/2021	
	20	Feb 15/2022		2	Oct 15/2021	
R	21	Oct 15/2023		3	Oct 15/2021	
11	22	Oct 15/2021		4	BLANK	
	23	Feb 15/2022		30-71-00		
Б				1	Oct 15/2021	
R	24	Oct 15/2023		2	Oct 15/2021	
	25	Oct 15/2021		3	Oct 15/2021	
	26	Oct 15/2021		4	Oct 15/2022	
	27	Oct 15/2021		5	Oct 15/2021	
	28	Oct 15/2021		6	Oct 15/2021	
R	29	Oct 15/2023		7	Oct 15/2021	
	30	Feb 15/2022		8	Oct 15/2021	
R	31	Oct 15/2023		9	Oct 15/2021	
	32	Feb 15/2022		10	BLANK	
30	0-42-00				DL/ (IVI)	
	1	Oct 15/2021				
	2	Oct 15/2021				
	3	Oct 15/2021				
	4	Oct 15/2021				
	5	Oct 15/2021				
	6	Oct 15/2021				
	7	Oct 15/2021				
	8	BLANK				

A = Added, R = Revised, D = Deleted, O = Overflow, C = Customer Originated Change

30-EFFECTIVE PAGES

CH-SC-SU	SUBJECT	PAGE	EFFECT
30-00-00	ICE AND RAIN PROTECTION - INTRODUCTION	2	SIAALL
30-00-00	ICE AND RAIN PROTECTION - GENERAL DESCRIPTION	4	SIAALL
30-11-00	ICE AND RAIN PROTECTION - WTAI - INTRODUCTION	2	SIAALL
30-11-00	ICE AND RAIN PROTECTION - WTAI - COMPONENT LOCATION	4	SIAALL
30-11-00	ICE AND RAIN PROTECTION - WTAI - ANTI-ICE PANEL	8	SIAALL
30-11-00	ICE AND RAIN PROTECTION - WTAI - WING THERMAL ANTI-ICING SHUTOFF VALVE	10	SIAALL
30-11-00	ICE AND RAIN PROTECTION - WTAI - WING ANTI-ICING GROUND OVERHEAT THERMAL SWITCH	12	SIAALL
30-11-00	ICE AND RAIN PROTECTION - WTAI - WING ANTI-ICING TELESCOPING DUCT	14	SIAALL
30-11-00	ICE AND RAIN PROTECTION - WTAI - CONTROL STAND WING ANTI-ICE SWITCHES	16	SIA ALL
30-11-00	ICE AND RAIN PROTECTION - WTAI - WTAI SOLENOID VALVE	20	SIAALL
30-11-00	ICE AND RAIN PROTECTION - WTAI - FUNCTIONAL DESCRIPTION	22	SIAALL
30-20-00	ICE AND RAIN PROTECTION - INLET COWLANTI-ICING SYSTEM - INTRODUCTION	2	SIA ALL
30-20-00	ICE AND RAIN PROTECTION - INLET COWL ANTI-ICING SYSTEM - INLET COWL TAI VALVE	4	SIAALL
30-20-00	ICE AND RAIN PROTECTION - INLET COWL ANTI-ICING SYSTEM - INLET COWL TAI PRESSURE SWITCH	6	SIA ALL
30-20-00	ICE AND RAIN PROTECTION - INLET COWL ANTI-ICING SYSTEM - FUNCTIONAL DESCRIPTION	8	SIA ALL

30-CONTENTS

CH-SC-SU	SUBJECT	PAGE	EFFECT
30-20-00	ICE AND RAIN PROTECTION - INLET COWL ANTI-ICING SYSTEM - OPERATION	10	SIA ALL
30-20-00	ICE AND RAIN PROTECTION - INLET COWL ANTI-ICING SYSTEM - CONTROLS	12	SIA ALL
30-30-00	ICE AND RAIN PROTECTION - PITOT AND STATIC - INTRODUCTION	2	SIAALL
30-30-00	ICE AND RAIN PROTECTION - PITOT AND STATIC - WINDOW/PITOT HEAT MODULE	4	SIA ALL
30-30-00	ICE AND RAIN PROTECTION - PITOT AND STATIC - PITOT PROBE	6	SIA ALL
30-30-00	ICE AND RAIN PROTECTION - PITOT AND STATIC - PITOT PROBE - FUNCTIONAL DESCRIPTION	8	SIA ALL
30-30-00	ICE AND RAIN PROTECTION - PITOT AND STATIC - ANGLE OF ATTACK SENSOR	10	SIA ALL
30-30-00	ICE AND RAIN PROTECTION - PITOT AND STATIC - ANGLE OF ATTACK SENSOR - FUNCTIONAL DESCRIPTION	12	SIA ALL
30-30-00	ICE AND RAIN PROTECTION - PITOT AND STATIC - TAT PROBE	14	SIA ALL
30-30-00	ICE AND RAIN PROTECTION - PITOT AND STATIC - TAT PROBE - FUNCTIONAL DESCRIPTION	16	SIA ALL
30-30-00	ICE AND RAIN PROTECTION - PITOT AND STATIC - OPERATION	18	SIA ALL
30-41-00	ICE AND RAIN PROTECTION - CTRL CABIN - INTRODUCTION	2	SIA ALL
30-41-00	ICE AND RAIN PROTECTION - CTRL CABIN - WINDOW HEAT CONDUCTIVE COATING AND SENSOR	6	SIA ALL
30-41-00	ICE AND RAIN PROTECTION - CTRL CABIN - WINDOW HEAT CONTROL UNIT	9	SIA ALL
30-41-00	ICE AND RAIN PROTECTION - CTRL CABIN - WINDOW HEAT CONTROL UNIT TERMINAL CONNECTIONS	14	SIA 702-714

30-CONTENTS

CH-SC-SU	SUBJECT	PAGE	EFFECT
30-41-00	ICE AND RAIN PROTECTION - CTRL CABIN - WINDOW HEAT CONTROL UNIT - GENERAL DESCRIPTION	16	SIA ALL
30-41-00	ICE AND RAIN PROTECTION - CTRL CABIN - WINDOW HEAT CONTROL UNIT - FUNCTIONAL DESCRIPTION	21	SIA ALL
30-41-00	ICE AND RAIN PROTECTION - CTRL CABIN - WINDOW THERMAL SWITCHES	26	SIA ALL
30-41-00	ICE AND RAIN PROTECTION - CTRL CABIN - WINDOW HEAT CONTROL UNIT - BITE	29	SIA ALL
30-42-00	ICE AND RAIN PROTECTION - WINDSHIELD WIPER SYSTEM - INTRODUCTION	2	SIA ALL
30-42-00	ICE AND RAIN PROTECTION - WINDSHIELD WIPER SYSTEM - WINDSHIELD WIPER AND DRIVE ASSEMBLY	4	SIA ALL
30-42-00	ICE AND RAIN PROTECTION - WINDSHIELD WIPER SYSTEM - FUNCTIONAL DESCRIPTION	6	SIA ALL
30-43-00	ICE AND RAIN PROTECTION - RAIN REPELLENT SYSTEM - HYDROPHOBIC WINDSHIELD COATING	2	SIA ALL
30-71-00	ICE AND RAIN PROTECTION - WATER LINES - INTRODUCTION	2	SIA ALL
30-71-00	ICE AND RAIN PROTECTION - WATER LINES - POTABLE WATER - FUNCTIONAL DESCRIPTION	4	SIA ALL
30-71-00	ICE AND RAIN PROTECTION - WATER LINES - GRAY WATER - FUNCTIONAL DESCRIPTION	6	SIA ALL
30-71-00	ICE AND RAIN PROTECTION - WATER LINES - VACUUM WASTE - FUNCTIONAL DESCRIPTION	8	SIA ALL

30-CONTENTS

THIS PAGE IS INTENTIONALLY LEFT BLANK

30-00-00

ICE AND RAIN PROTECTION - INTRODUCTION

Purpose

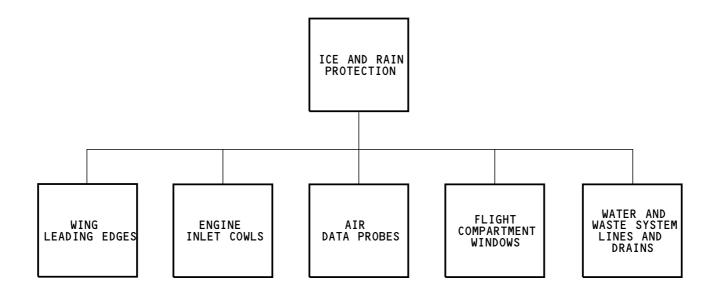
The ice and rain protection system keeps ice from these airplane parts:

- · Wing leading edges
- · Engine inlet cowls
- Air data probes
- · Flight compartment windows
- Water and waste system lines and drains.

Abbreviations and Acronyms

- · CTAI cowl thermal anti-ice
- TAI thermal anti-ice
- . WHCU window heat control unit
- · WTAI wing thermal anti-ice
- TRA thrust resolver angle
- PRSOV pressure regulating shutoff valve.

EFFECTIVITY


30-00-00

SIA ALL

Page 2

ICE AND RAIN PROTECTION - INTRODUCTION

M84796 S0004626381_V1

ICE AND RAIN PROTECTION - INTRODUCTION

EFFECTIVITY SIA ALL

30-00-00

Page 3 Oct 15/2021

ICE AND RAIN PROTECTION - GENERAL DESCRIPTION

Wing and Inlet Cowl Thermal Anti-ice Systems

The wing thermal anti-ice and the engine inlet cowl thermal anti-ice systems use hot bleed air to prevent ice.

Air Data Probe Heat

The air data probes use electric heat to prevent ice.

Flight Compartment Windows

Flight deck windows use electric heat to do these functions:

- Prevent ice formation on the windows
- · Prevent fog on the windows
- · Improve window impact strength.

The windows use these features to improve forward vision in rain:

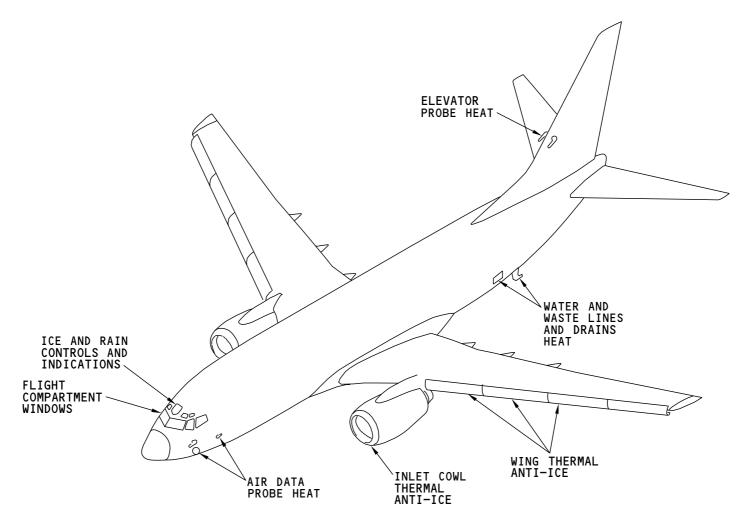
- Wipers
- Hydrophobic (rain repellent) coatings.

Water and Waste System lines and Drains

The water and waste lines and drains use electric heat to prevent ice.

Ice and Rain Controls

The controls and indications for the ice and rain protection systems are in the flight compartment on the P5 forward overhead panel.


EFFECTIVITY

30-00-00

SIA ALL

ICE AND RAIN PROTECTION - GENERAL DESCRIPTION

M84797 S0004626383 V1

Page 5 Oct 15/2021

ICE AND RAIN PROTECTION - GENERAL DESCRIPTION

30-00-00D633A101-SIA

SIA ALL

EFFECTIVITY

THIS PAGE IS INTENTIONALLY LEFT BLANK

30-11-00

ICE AND RAIN PROTECTION - WTAI - INTRODUCTION

Purpose

The wing thermal anti-ice system (WTAI) keeps ice from forming on the leading edge of the wing.

General Description

The WTAI system uses hot air from the pneumatic system to heat the three inboard leading edge slats of the wing.

A switch on the P5 forward overhead panel controls the operation of the WTAI system.

The WTAI system may operate in flight or on the ground.

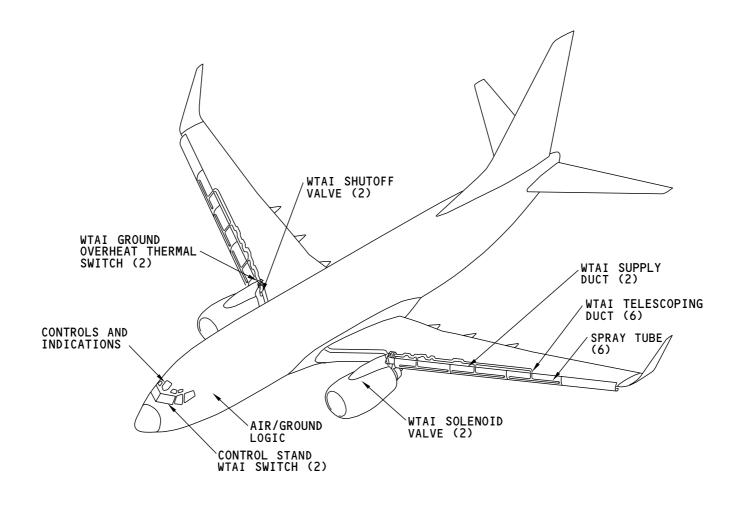
When the system is on, the valves open and hot air from the pneumatic ducts goes to the leading edge of the wings. The heated air flows to the three inboard leading edge slat spray tubes. The air sprays into the slat cavities and exhausts overboard through holes in the bottom of the slats.

Overheat switches in each wing leading edge, protect the slats from overheat. This overheat protection operates only when the airplane is on the ground.

Switches on the control stand close the WTAI valves when you advance the engine thrust levers. This conserves engine thrust for takeoff. This thrust conservation protection only operates when the airplane is on the ground.

The air/ground logic gives the wing anti-ice system air ground sense feedback. The engine and wing anti-ice module uses this feedback to enable overheat and thrust conservation protection for the wing anti-ice system. It also turns off the WTAI system during takeoff.

EFFECTIVITY


30-11-00

SIA ALL

Page 2

ICE AND RAIN PROTECTION - WTAI - INTRODUCTION

M84802 S0004626390_V1

Page 3 Oct 15/2021

ICE AND RAIN PROTECTION - WTAI - INTRODUCTION

30-11-00

ICE AND RAIN PROTECTION - WTAI - COMPONENT LOCATION

Flight Compartment

The engine and wing anti-ice control panel is on the P5 forward overhead panel.

Forward Equipment Compartment

EFFECTIVITY

There are two control stand wing anti-ice switches. One switch is on each of the two autothrottle switchpacks. The switchpacks are in the forward equipment compartment.

Engine

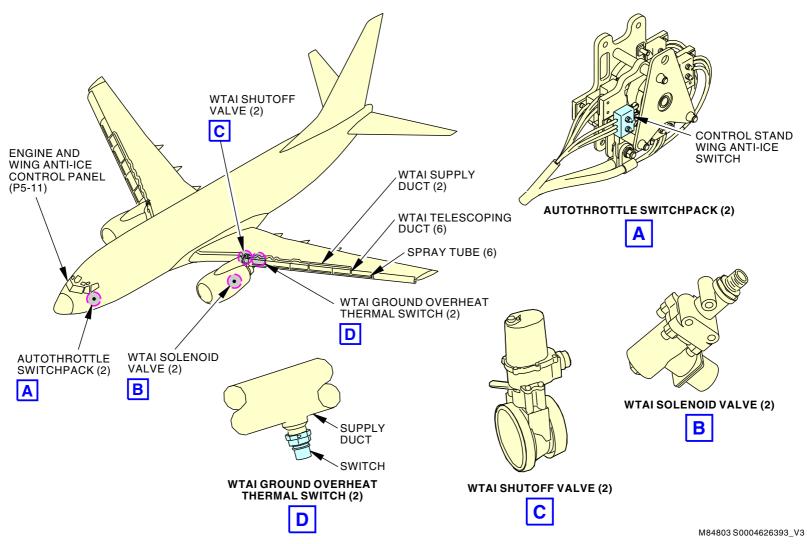
There are two WTAI solenoid valves. They are on the top of the engine compressor case.

Wing Leading Edges

There are two WTAI shutoff valves. They are in the wing leading edges, outboard of each engine strut.

There are two WTAI ground overheat thermal switches. They are on the WTAI duct in the wing leading edges downstream of the WTAI valves.

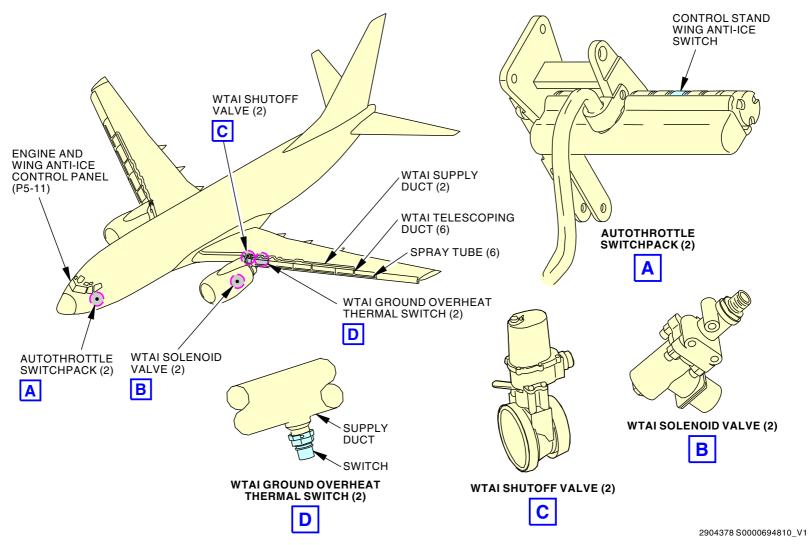
The WTAI supply ducts are on the forward wing spars.


There are six WTAI telescoping ducts. They are in the wing leading edges. There are six WTAI spray tubes. They are in the three inboard slats of each wing.

30-11-00

SIA ALL

ICE AND RAIN PROTECTION - WTAI - COMPONENT LOCATION

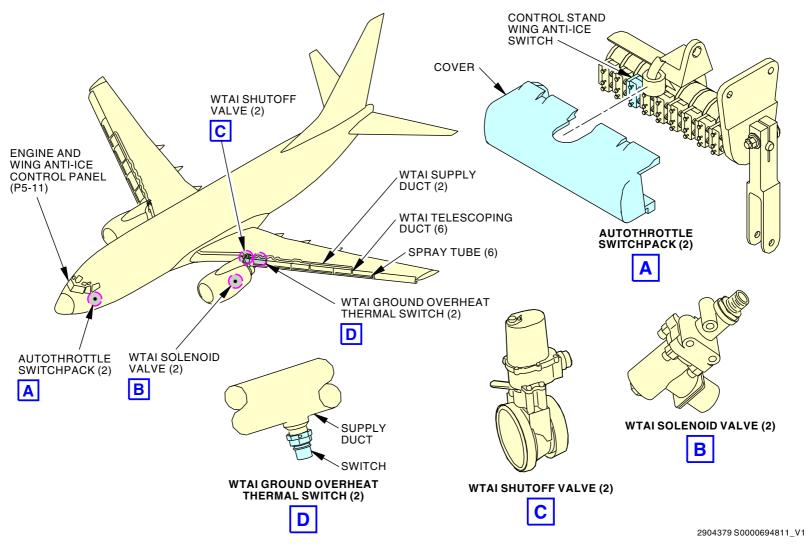

ICE AND RAIN PROTECTION - WTAI - COMPONENT LOCATION

30-11-00

Page 5

ICE AND RAIN PROTECTION - WTAI - COMPONENT LOCATION

ICE AND RAIN PROTECTION - WTAI - COMPONENT LOCATION


EFFECTIVITY
SIA ALL; AUTOTHROTTLE SWITCHPACK WITH INTEGRATED SWITCHES P/N 254A1150-11, -12

30-11-00

Page 6 Oct 15/2021

ICE AND RAIN PROTECTION - WTAI - COMPONENT LOCATION

ICE AND RAIN PROTECTION - WTAI - COMPONENT LOCATION

EFFECTIVITY
SIA ALL; AUTOTHROTTLE SWITCHPACK WITH INTEGRATED SWITCHES P/N 254A1150-13, -14, -15, -16

30-11-00

Page 7 Oct 15/2021

ICE AND RAIN PROTECTION - WTAI - ANTI-ICE PANEL

Purpose

The anti-ice panel does these things:

- Gives the flight crew interface with the wing and engine inlet cowl anti-icing systems
- · Has the circuitry for control and indication of the wing anti-icing system
- Has the circuitry for control and indication of the engine inlet cowl anti-icing systems.

Location

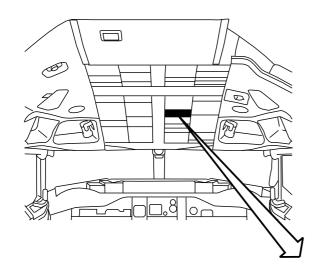
The panel is on the P5 forward overhead panel.

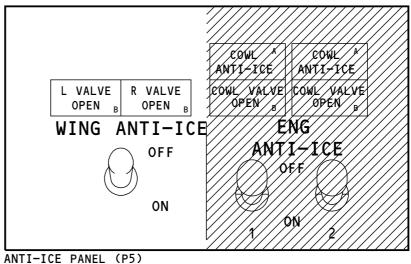
General Description

The wing anti-ice valve is open when the wing ant-ice switch is in the ON position. The blue L (R) VALVE OPEN light monitors the valve and switch positions. These are the light indications:

- Light is off the switch is in the OFF position and the valve is closed
- Light is dim the switch is in the ON position and the valve is open
- Light is bright the switch position and valve position disagree or the valve is in transit.

EFFECTIVITY


30-11-00


SIA ALL

ICE AND RAIN PROTECTION - WTAI - ANTI-ICE PANEL

M84805 S0004626396 V1

ICE AND RAIN PROTECTION - WTAI - ANTI-ICE PANEL

EFFECTIVITY SIA ALL

30-11-00

Page 9 Oct 15/2021

ICE AND RAIN PROTECTION - WTAI - WING THERMAL ANTI-ICING SHUTOFF VALVE

Purpose

The wing thermal anti-ice shutoff valves control air flow from the pneumatic manifold to the anti-ice supply ducts.

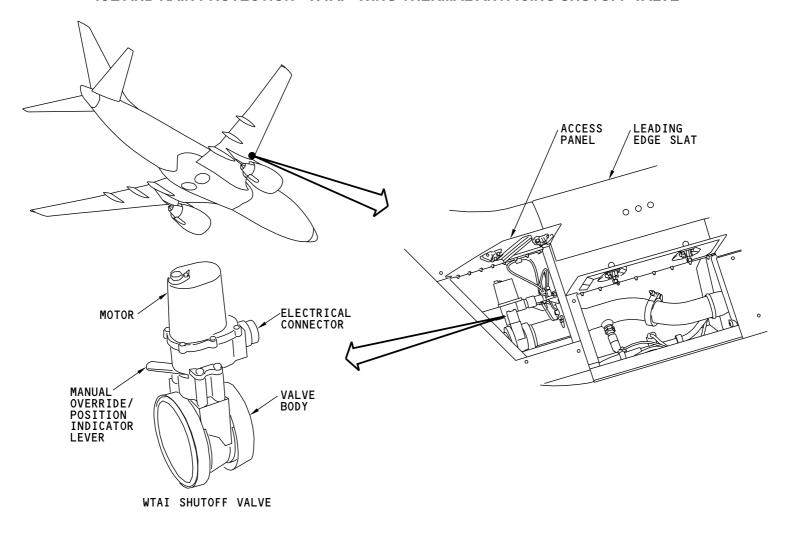
Location

There is one valve in each wing leading edge, outboard of the engine strut.

Physical Description

The valve is a motor-operated butterfly-type valve. It has a manual override and position indication lever. The valves use 115v ac power.

Two V-flange clamps mount the valve to the duct.


SIA ALL

30-11-00

Page 10

ICE AND RAIN PROTECTION - WTAI - WING THERMAL ANTI-ICING SHUTOFF VALVE

M84809 S0004626399_V1

ICE AND RAIN PROTECTION - WTAI - WING THERMAL ANTI-ICING SHUTOFF VALVE

30-11-00

30-11-00-005

EFFECTIVITY

ICE AND RAIN PROTECTION - WTAI - WING ANTI-ICING GROUND OVERHEAT THERMAL SWITCH

Purpose

The wing anti-icing ground overheat thermal switch protects the wing leading edges from overheat damage.

This protection operates only when the wing thermal anti-ice (WTAI) system is on and the airplane is on the ground.

Location

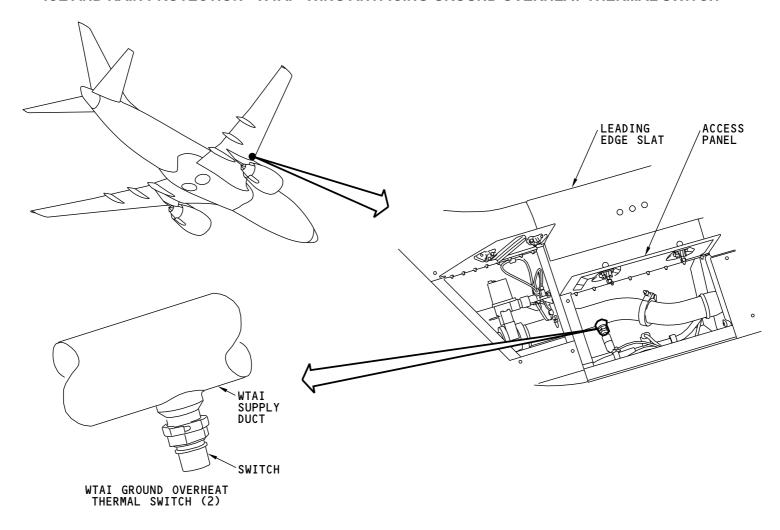
There are two wing anti-icing ground overheat thermal switches. They are in the WTAI supply ducts, downstream of the WTAI shutoff valves.

Functional Description

The switches are bimetallic. Thermal expansion closes the switch when the temperature is 257F (125C).

When the switch closes, a ground discrete signal is sent to the engine and wing anti-ice control panel (P5-11).

Both WTAI shutoff valves close in response to either thermal switch.


EFFECTIVITY

30-11-00

SIA ALL

ICE AND RAIN PROTECTION - WTAI - WING ANTI-ICING GROUND OVERHEAT THERMAL SWITCH

M84813 S0004626402_V1

ICE AND RAIN PROTECTION - WTAI - WING ANTI-ICING GROUND OVERHEAT THERMAL SWITCH

SIA ALL

30-11-00

Page 13 Oct 15/2021

ICE AND RAIN PROTECTION - WTAI - WING ANTI-ICING TELESCOPING DUCT

Purpose

The wing anti-icing telescoping ducts supply hot air to the spray tubes in the wing leading edge.

Location

There are six wing anti-icing telescoping ducts. They are in the wing leading edges between the wing thermal anti-ice (WTAI) supply duct and the three inboard slats of each wing.

Physical Description

Each wing has three wing anti-icing telescoping ducts.

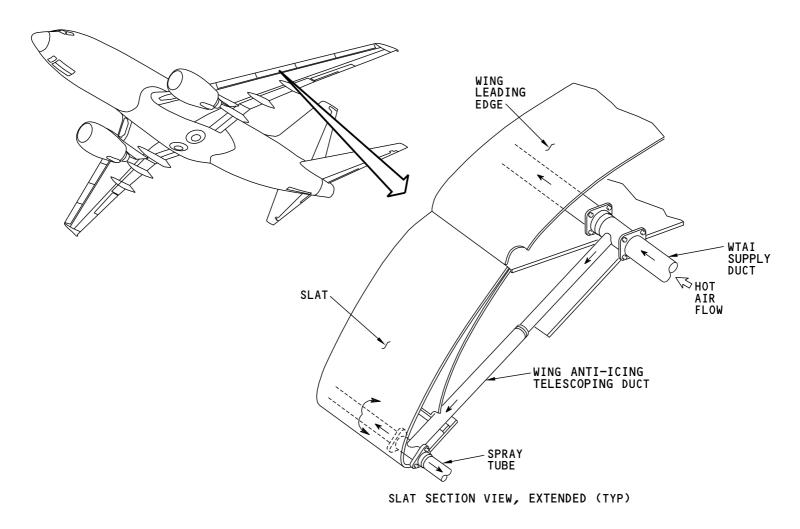
The telescoping ducts have an inner and outer section. The inner and outer sections slide over each other during slat extension and retraction.

The inner tube is teflon coated to prevent binding when the two sections slide over each other.

Functional Description

EFFECTIVITY

The anti-icing telescoping ducts let hot air from the WTAI duct flow to the slat spray tubes.


The spray tubes have holes to let the bleed air into the slat cavity. The air circulates in the cavity and warms the slat. This prevents ice formation on the slat. The air then bleeds overboard through holes in the bottom of the slat.

30-11-00

SIA ALL

ICE AND RAIN PROTECTION - WTAI - WING ANTI-ICING TELESCOPING DUCT

M84812 S0004626405 V1

ICE AND RAIN PROTECTION - WTAI - WING ANTI-ICING TELESCOPING DUCT

SIA ALL

30-11-00

Page 15 Oct 15/2021

30-11-00

ICE AND RAIN PROTECTION - WTAI - CONTROL STAND WING ANTI-ICE SWITCHES

Purpose

The two control stand WTAI switches give thrust lever position feedback to the engine and wing anti-ice control panel (P5-11).

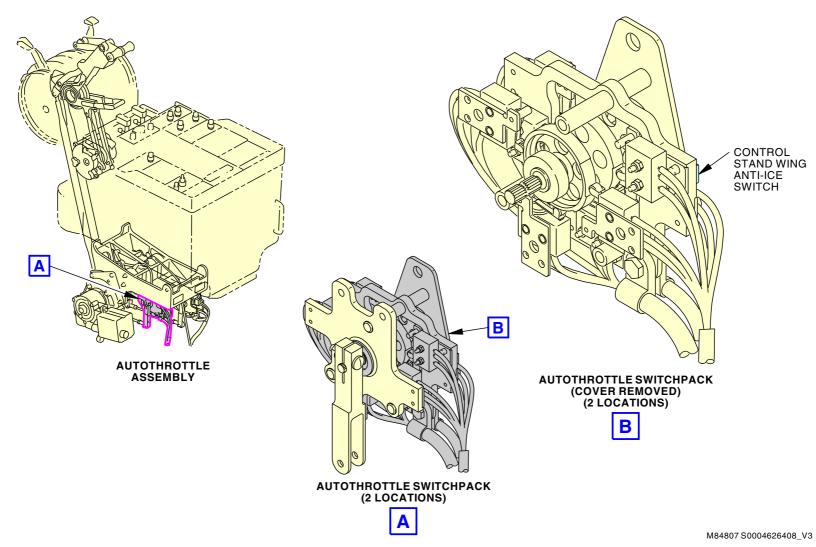
Location

There are two control stand wing anti-ice switches.

One switch is on each of the two autothrottle switchpacks. Access is through the forward equipment compartment.

Functional Description

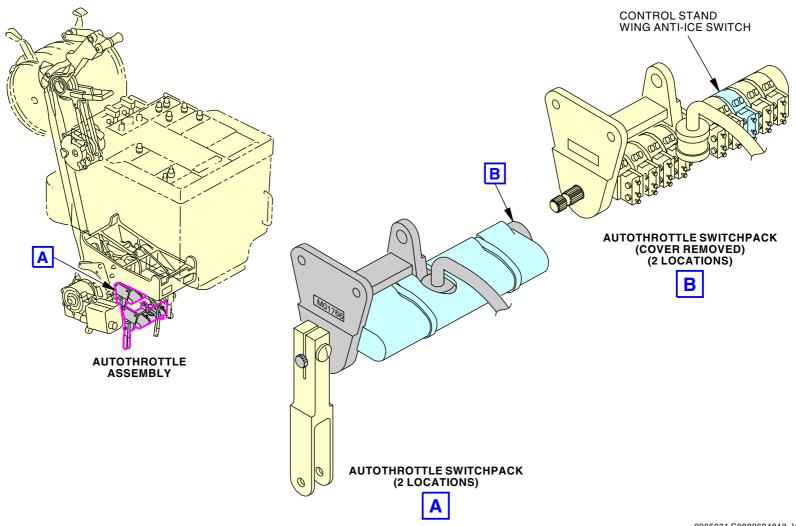
When you advance the throttles (approximately 60 degrees thrust resolver angle), the switches close and give ground inputs to the control panel.


The wing anti-ice control panel closes both WTAI shutoff valves in response to either control stand wing anti-ice switch. The control stand enables this protection only when the airplane is on the ground. This conserves engine power for takeoff.

EFFECTIVITY

SIA ALL

ICE AND RAIN PROTECTION - WTAI - CONTROL STAND WING ANTI-ICE SWITCHES

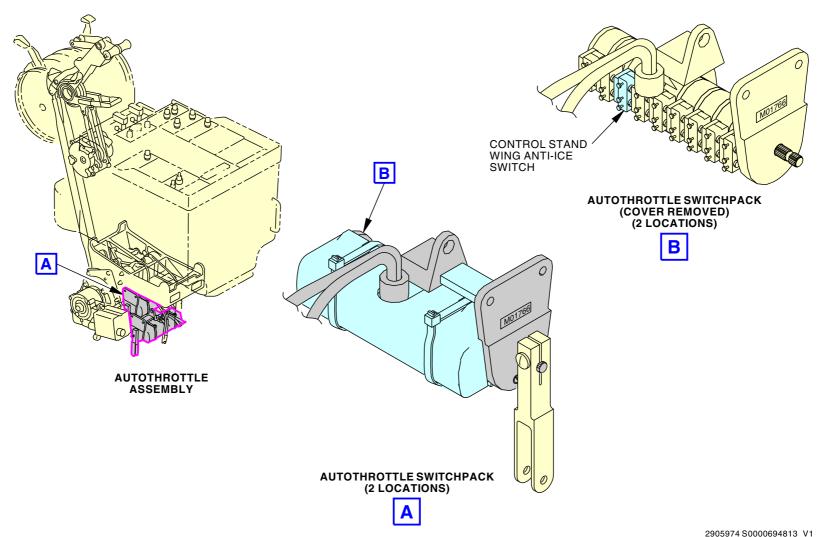


ICE AND RAIN PROTECTION - WTAI - CONTROL STAND WING ANTI-ICE SWITCHES

30-11-00

ICE AND RAIN PROTECTION - WTAI - CONTROL STAND WING ANTI-ICE SWITCHES

ICE AND RAIN PROTECTION - WTAI - CONTROL STAND WING ANTI-ICE SWITCHES


2905931 S0000694812 V1

EFFECTIVITY SIA ALL; AUTOTHROTTLE SWITCHPACK WITH INTEGRATED SWITCHES P/N 254A1150-11, -12 30-11-00

Page 18 Oct 15/2021

ICE AND RAIN PROTECTION - WTAI - CONTROL STAND WING ANTI-ICE SWITCHES

ICE AND RAIN PROTECTION - WTAI - CONTROL STAND WING ANTI-ICE SWITCHES

EFFECTIVITY SIA ALL; AUTOTHROTTLE SWITCHPACK WITH INTEGRATED SWITCHES P/N 254A1150-13, -14, -15, -16 30-11-00

Page 19 Oct 15/2021

ICE AND RAIN PROTECTION - WTAI - WTAI SOLENOID VALVE

Purpose

The wing thermal anti-ice (WTAI) solenoid valve bleeds actuator pressure from the precooler control valve. The WTAI solenoid valve operates when the wing thermal anti-icing system is used on the ground.

Location

There are two WTAI solenoid valves. There is one valve on the top of each engine. Access is by opening the thrust reverser cowl.

Physical Description

The WTAI solenoid valve is a normally closed ball-type poppet valve. It is energized to the open position with 28v dc electric power.

Functional Description

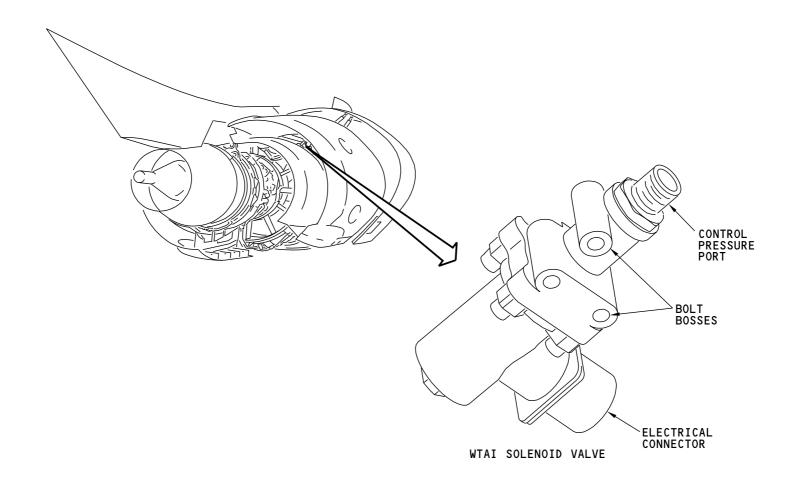
When the wing thermal anti-ice is used on the ground, the engine and wing anti-ice control panel (P5-11) energizes the WTAI solenoid valve. This releases the control pressure from the precooler control valve actuator. This causes the precooler control valve to open fully.

The wide open precooler control valve gives maximum cooling to the engine bleed air. This protects the wing leading edges from overheat damage.

The wing thermal anti-icing system is made to keep the leading edge of the wing free of ice accumulation during flight. During flight there is a large airflow over the wing. This airflow has a great cooling effect on the leading edges. The wing thermal anti-icing system heat output is great enough to overcome this cooling effect.

When the wing thermal anti-icing system is used on the ground, there is very little cooling airflow over the wing. In these conditions, the wing thermal anti-icing system heat output can overheat the wing leading edges. This can damage the heat treatment of the leading edges devices. To prevent overheat damage to the wing leading edge, the engine bleed air is given maximum cooling during ground operations.

EFFECTIVITY


30-11-00

SIA ALL

Page 20

ICE AND RAIN PROTECTION - WTAI - WTAI SOLENOID VALVE

M84815 S0004626411_V1

ICE AND RAIN PROTECTION - WTAI - WTAI SOLENOID VALVE

30-11-00

SIA ALL

EFFECTIVITY

ICE AND RAIN PROTECTION - WTAI - FUNCTIONAL DESCRIPTION

General

The wing thermal anti-ice (WTAI) system uses 115v ac power to operate the WTAI shutoff valves and 28v dc for control and indication. This system operates on the ground and in flight.

The K1 relay connects power to operate the WTAI shutoff valves. When the relay is energized, it sends 115v ac power to open the WTAI shutoff valves. When the relay is de-energized, it sends 115v ac power to close the WTAI shutoff valves.

Ground Operations

When the airplane is on the ground, the K1 relay energizes to open the WTAI shutoff valves for these conditions:

- WING ANTI-ICE switch (P5-11) is in the ON position
- No overheat conditions (wing anti-icing ground overheat thermal switches)
- No engine thrust lever is advanced (control stand wing anti-ice switches).

Takeoff

When the thrust levers are >60 TRA, the WTAI valves close. This decreases engine bleed loads and conserves thrust for climb.

The WING ANTI-ICE switch is a circuit breaker type switch. Resistance in the K1 energizing circuit keeps current in the switch below its trip threshold.

During takeoff, a logic circuit in the control panel gives the switch a low resistance path to ground. This causes an overcurrent in the switch and the switch trips to the OFF position. The pilot must select WTAI after takeoff if necessary.

Flight Operations

SIA ALL

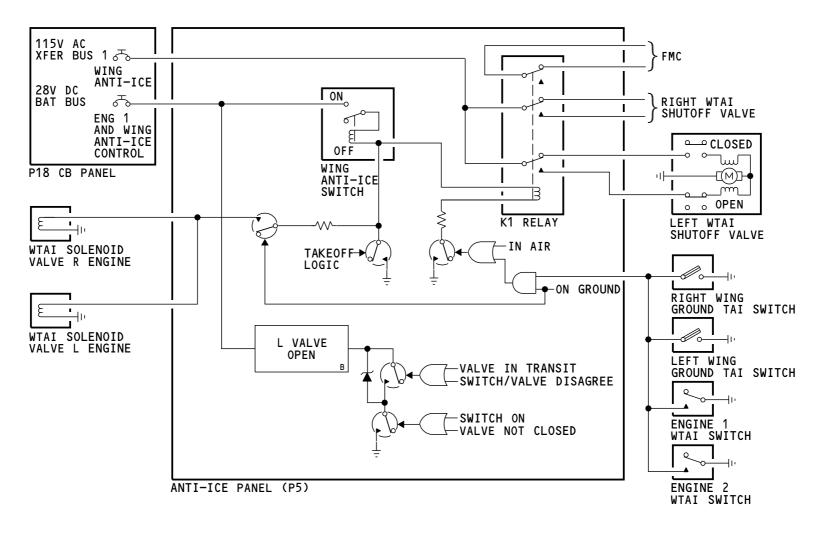
When the airplane is in the air, the K1 relay energizes to open the WTAI shutoff valves when the wing anti-ice switch is in the ON position.

Indication

This is the control panel logic for the dimming diode control of the blue L (R) VALVE OPEN indication lights:

- Light is off the switch is in the OFF position and the valve is closed
- Light is dim the switch is in the ON position and the valve is open
- Light is bright the switch position and valve position are not the same or the valve is in transit.

These things control the bright and dim functions of the L (R) VALVE OPEN lights on anti-ice panel:


- · System switch and valve position feedback
- · Control panel solid state switch circuits
- Voltage reduction zener diodes (dim mode).

EFFECTIVITY

30-11-00

ICE AND RAIN PROTECTION - WTAI - FUNCTIONAL DESCRIPTION

M84816 S0004626413_V1

ICE AND RAIN PROTECTION - WTAI - FUNCTIONAL DESCRIPTION

D633A101-SIA

ECCN 9E991 BOEING PROPRIETARY - See title page for details

30-11-00

30-11-00-009

SIA ALL

EFFECTIVITY

THIS PAGE IS INTENTIONALLY LEFT BLANK

30-20-00

ICE AND RAIN PROTECTION - INLET COWL ANTI-ICING SYSTEM - INTRODUCTION

Purpose

The inlet cowl anti-icing system keeps ice from forming on the engine inlet cowl.

General Description

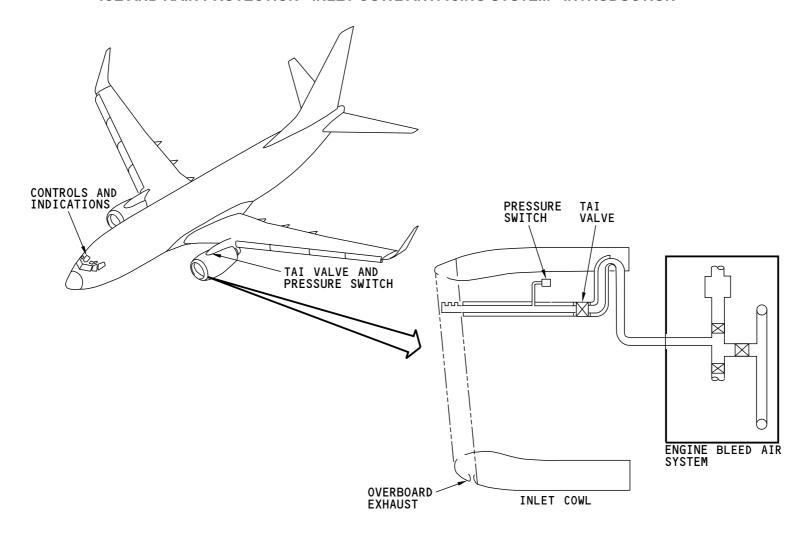
Each engine has an inlet cowl anti-icing system.

The systems operate in flight and on the ground.

A switch on the P5 forward overhead panel controls the operation of each inlet cowl anti-icing system.

When the system is on, the inlet cowl thermal anti-ice (TAI) valve opens. Hot air from the engine bleed air interstage duct goes through the valve into the hollow inlet cowl. The warm air increases the temperature in the inlet cowl. The warm air then goes overboard through a vent at the bottom of the cowl.

Each engine is the source of its inlet cowl thermal anti-icing air. Thermal anti-icing air is from the engine bleed air interstage duct, upstream of the pressure regulator and shutoff valve.


An inlet cowl TAI pressure switch monitors the pressure in the duct downstream of the inlet cowl anti-icing valve.

EFFECTIVITY

30-20-00

ICE AND RAIN PROTECTION - INLET COWL ANTI-ICING SYSTEM - INTRODUCTION

M84819 S0004626418_V1

ICE AND RAIN PROTECTION - INLET COWL ANTI-ICING SYSTEM - INTRODUCTION

SIA ALL
D633A101-SIA

30-20-00

Page 3 Oct 15/2021

ICE AND RAIN PROTECTION - INLET COWL ANTI-ICING SYSTEM - INLET COWL TAI VALVE

Purpose

The inlet cowl thermal anti-ice (TAI) valve controls the flow of air to the engine inlet cowl.

Location

The inlet cowl TAI valve is on the right side of the engine fan case.

Physical Description

The inlet cowl TAI valve has these parts:

- Actuator
- · Electrical connector
- Control solenoid
- · Manual override collar/position indicator
- Flow body
- · Regulator.

Downstream of the valve is a pressure switch.

Functional Description

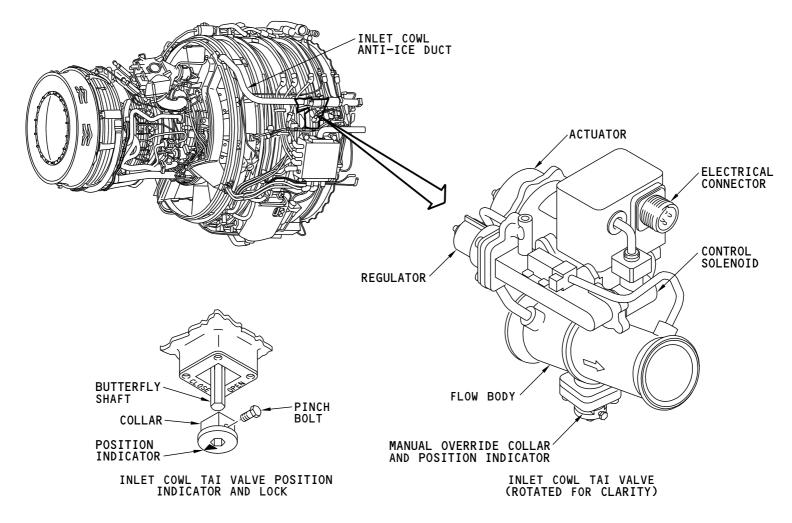
The inlet cowl anti-ice valve is an electrically controlled and pneumatically operated butterfly valve. It is spring loaded to the closed position.

When the control signal energizes the valve solenoid, the solenoid lets upstream duct pressure into the valve regulator. The regulator controls the pressure and sends it to the actuator. The actuator opens the valve against spring pressure. A downstream sense line on the valve biases the regulator. The regulator modulates the valve butterfly plate to limit downstream pressure to 50 psi maximum.

Valve limit switches give valve position feedback to the P5-11 module for system status indication.

Training Information Point

The inlet cowl TAI valve has a manual override collar. You can manually lock the valve in the full open or full closed position if the valve fails.


SIA ALL

30-20-00

ICE AND RAIN PROTECTION - INLET COWL ANTI-ICING SYSTEM - INLET COWL TAI VALVE

M84820 S0004626421 V1

ICE AND RAIN PROTECTION - INLET COWL ANTI-ICING SYSTEM - INLET COWL TAI VALVE

30-20-00

EFFECTIVITY

ICE AND RAIN PROTECTION - INLET COWL ANTI-ICING SYSTEM - INLET COWL TAI PRESSURE SWITCH

Purpose

The inlet cowl thermal anti-ice (TAI) pressure switch monitors pressure in the inlet cowl TAI duct downstream of the inlet cowl TAI valve.

location

The inlet cowl TAI pressure switch is on the inlet cowl TAI duct, downstream of the inlet cowl thermal anti-ice valve.

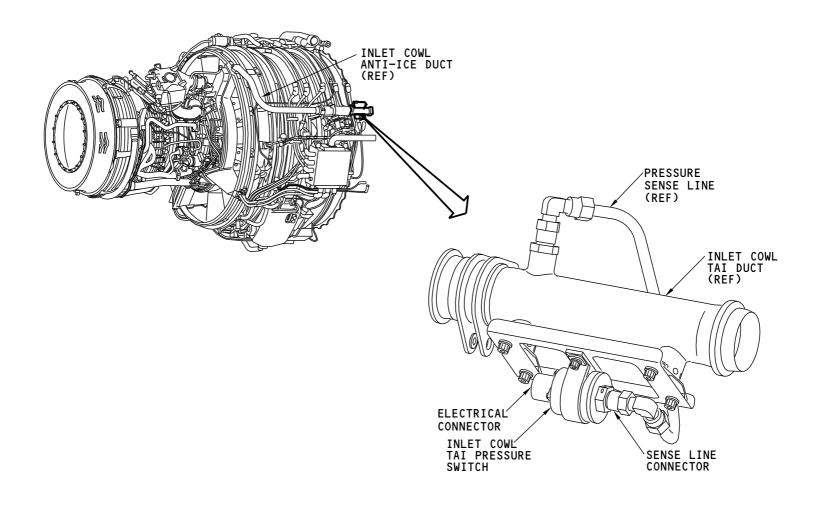
Physical Description

The inlet cowl TAI pressure switch has these parts:

- · Sense Line connector
- · Electrical connector.

Functional Description

The switch is an aneroid type switch.


When the pressure at the sense port is more than 65 psi, the switch closes. This enables the indication light on P5 forward overhead panel.

EFFECTIVITY

30-20-00

ICE AND RAIN PROTECTION - INLET COWL ANTI-ICING SYSTEM - INLET COWL TAI PRESSURE SWITCH

M84822 S0004626424_V1

ICE AND RAIN PROTECTION - INLET COWL ANTI-ICING SYSTEM - INLET COWL TAI PRESSURE SWITCH

SIA ALL

30-20-00

Page 7 Oct 15/2021

ICE AND RAIN PROTECTION - INLET COWL ANTI-ICING SYSTEM - FUNCTIONAL DESCRIPTION

General

There are two inlet cowl anti-icing systems (engine 1 and engine 2). The two systems are the same. The control and indications circuits for the inlet cowl anti-icing systems use 28v dc power.

The switches and lights for the control and indication are on the P5-11 engine and wing anti-ice panel.

Inlet Cowl Anti-Icing

When you put the ENG ANTI-ICE switch in the ON position, the switch does these things:

- Sends 28v dc to energize the control solenoid on the inlet cowl TAI valve
- Gives an open loop discrete to the EEC (for engine idle control)
- Gives an open loop discrete to the FMC (to bias fuel schedules for bleed loads).

The control panel logic and a dimming diode control the blue COWL VALVE OPEN lights:

- Light is off the switch is in the OFF position and the valve is closed
- Light is dim the switch is in the ON position and the valve is open
- Light is bright the switch position and valve position disagree or the valve is in transit.

These things control the bright and dim functions of the COWL VALVE OPEN lights on the anti-ice panel:

- · System switch and valve position feedback
- · Control panel solid state switch circuits

EFFECTIVITY

• Voltage reduction zener diodes (dim mode).

The closed position switch and the open position switch give valve position data.

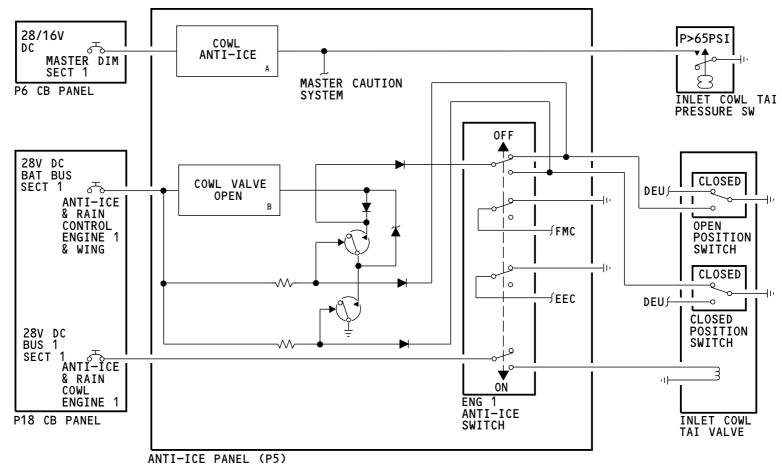
The closed position switch is in the closed position when the valve is almost closed.

The open position switch is in the open position when the valve is more than 15 degrees open.

Overpressure Indication

When the inlet cowl TAI pressure switch operates, it causes these lights to come on:

- The amber COWL ANTI-ICE light
- The MASTER CAUTION and ANTI-ICE annunciator lights.


30-20-00

SIA ALL

Page 8

ICE AND RAIN PROTECTION - INLET COWL ANTI-ICING SYSTEM - FUNCTIONAL DESCRIPTION

NOTE: LEFT SYSTEM SHOWN, RIGHT SYSTEM THE SAME.

M84824 S0004626427_V1

ICE AND RAIN PROTECTION - INLET COWL ANTI-ICING SYSTEM - FUNCTIONAL DESCRIPTION

SIA ALL

D633A101-SIA

ECCN 9E991 BOEING PROPRIETARY - See title page for details

30-20-00

Page 9 Oct 15/2021

ICE AND RAIN PROTECTION - INLET COWL ANTI-ICING SYSTEM - OPERATION

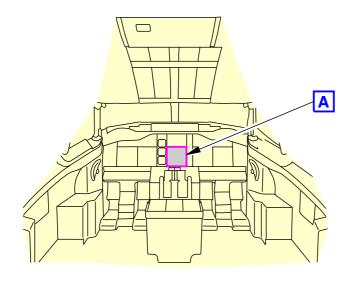
CDS Displays

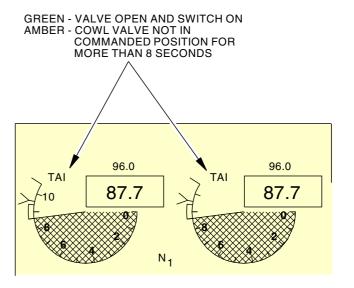
The common display system (CDS) shows engine inlet cowl TAI status. The display message is TAI. It shows left of each digital N1 speed indication field.

The TAI message is green when the switch is in the ON position and the CTAI valve is open.

The TAI message is amber when the switch and the valve position do not agree for more than 8 seconds.

EFFECTIVITY


30-20-00


30-20-00-020

Page 10

ICE AND RAIN PROTECTION - INLET COWL ANTI-ICING SYSTEM - OPERATION

TAI-INDICATION (COMMON DISPLAY SYSTEM)

Α

M84787 S0004626430_V2

ICE AND RAIN PROTECTION - INLET COWL ANTI-ICING SYSTEM - OPERATION

SIA ALL

30-20-00

Page 11 Oct 15/2021

ICE AND RAIN PROTECTION - INLET COWL ANTI-ICING SYSTEM - CONTROLS

Purpose

The anti-ice panel does these things:

- Gives the flight crew interface with the wing and engine inlet cowl anti-icing systems
- Has the circuitry for control and indication of the cowl anti-icing system.

Location

The panel is on the P5 forward overhead panel.

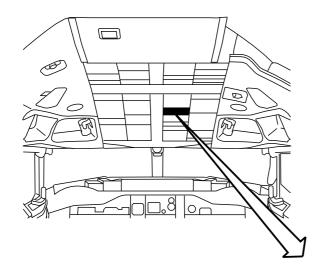
General Description

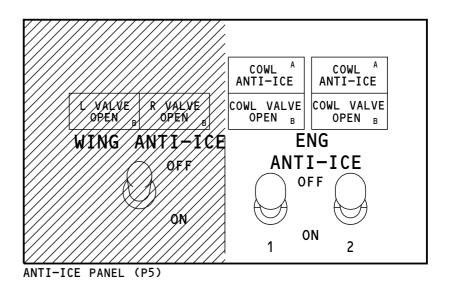
The cowl anti-ice valve opens when the switch is in the ON position on the ground or in flight. The blue COWL VALVE OPEN light shows the valve and switch positions. These are the light indications:

- · Light is off the switch is in the OFF position and the valve is closed
- Light is dim the switch is in the ON position and the valve is open
- Light is bright the switch position and valve position are not the same or the valve is in transit.

When the duct pressure downstream of the valve is too high, this is the indication:

- Amber COWL ANTI-ICE light
- MASTER CAUTION and ANTI-ICE annunciator lights.


EFFECTIVITY


30-20-00

ICE AND RAIN PROTECTION - INLET COWL ANTI-ICING SYSTEM - CONTROLS

M84827 S0004626432_V1

ICE AND RAIN PROTECTION - INLET COWL ANTI-ICING SYSTEM - CONTROLS

SIA ALL

30-20-00

THIS PAGE IS INTENTIONALLY LEFT BLANK

30-30-00

ICE AND RAIN PROTECTION - PITOT AND STATIC - INTRODUCTION

Purpose

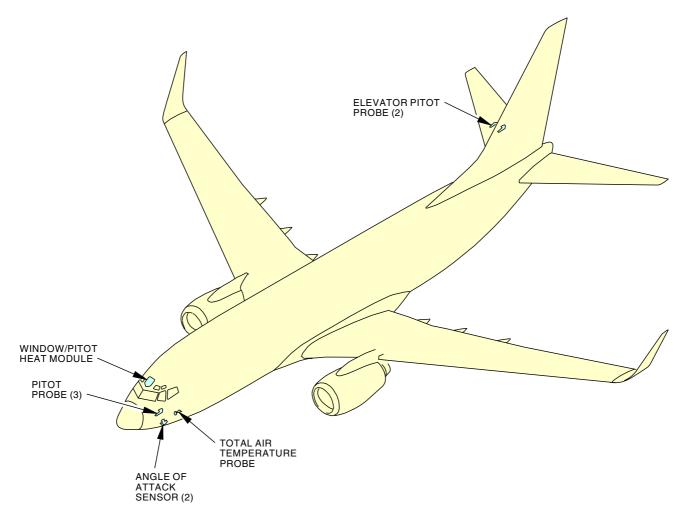
The probe anti-icing system prevents ice on the air data probes.

General

You control the probe heat from the window/pitot heat module on the P5 forward overhead panel.

The probes have integral heaters that use electrical power for heat.

The probe anti-icing system supplies heat to these probes:


- Angle of attack sensor (2)
- · Total air temperature probe
- Pitot probes (5).

The static system sense ports are not part of the probe heat system. These ports are flush with the fuselage and heat is not necessary.

EFFECTIVITY 30-30-00

ICE AND RAIN PROTECTION - PITOT AND STATIC - INTRODUCTION

M84831 S0004626438_V2

ICE AND RAIN PROTECTION - PITOT AND STATIC - INTRODUCTION

SIA ALL

D633A101-SIA

ECCN 9E991 BOEING PROPRIETARY - See title page for details

30-30-00

Page 3 Oct 15/2021

If system A or system B does not operate correctly, this configuration makes it possible to continue safe flight with the essential air data from the system

ICE AND RAIN PROTECTION - PITOT AND STATIC - WINDOW/PITOT HEAT MODULE

that still operates.

Purpose

The window/pitot heat module does these things:

- · Controls the electric power to the probe anti-icing systems
- Gives the flight crew indication of the probe anti-icing system status.

Location

The window/pitot heat module is on the P5 forward overhead panel.

General Description

There are two air data probe heater systems, A and B. These toggle switches let the crew turn on the probe heat systems:

- PROBE HEAT A
- PROBE HEAT B.

If the crew fails to activate the probe heat systems, the probe heat systems are still automatically turned on when the engines start.

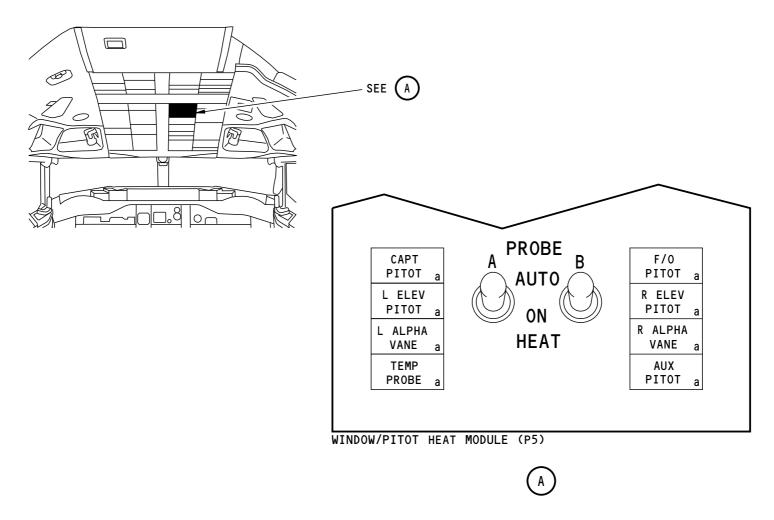
There are two system indication light banks, one for the A system and one for the B system. The lights come on when the probe heaters do not draw electrical current.

The heat for the following probes is controlled by probe heater system A:

- LEFT (CAPT) PITOT
- LEFT ELEVATOR PITOT
- LEFT ALPHA VANE
- TEMPERATURE PROBE.

The heat for these probes is controlled through probe heater system B:

- UPPER RIGHT (F/O) PITOT
- LOWER RIGHT (AUX) PITOT
- RIGHT ALPHA VANE
- RIGHT ELEVATOR PITOT.


EFFECTIVITY

30-30-00

Page 4

ICE AND RAIN PROTECTION - PITOT AND STATIC - WINDOW/PITOT HEAT MODULE

2009561 S0000394398 V1

ICE AND RAIN PROTECTION - PITOT AND STATIC - WINDOW/PITOT HEAT MODULE

SIA ALL

30-30-00

Page 5 Oct 15/2021

ICE AND RAIN PROTECTION - PITOT AND STATIC - PITOT PROBE

Purpose

The pitot probe anti-icing system prevents ice on the pitot tubes. This prevents false air data signals that ice can cause.

Physical Description

The pitot probes have these parts:

- · Pitot tube with integral heat element
- Pressure sense connector
- · Electrical connector
- Baseplate.

Location

There is one pitot probe (captain) on the left forward fuselage.

There are two pitot probes (first officer and auxiliary) on the right forward fuselage.

There are two elevator pitot probes on the vertical stabilizer.

General

The pitot probes have electric heaters. If a probe heater fails, you must replace the probe.

See the navigation section for more information on the captain, first officer, and auxiliary pitot probes. (SECTION 34-11)

See the elevator and tab control system for more information on the elevator pitot probes. (SECTION 27-31)

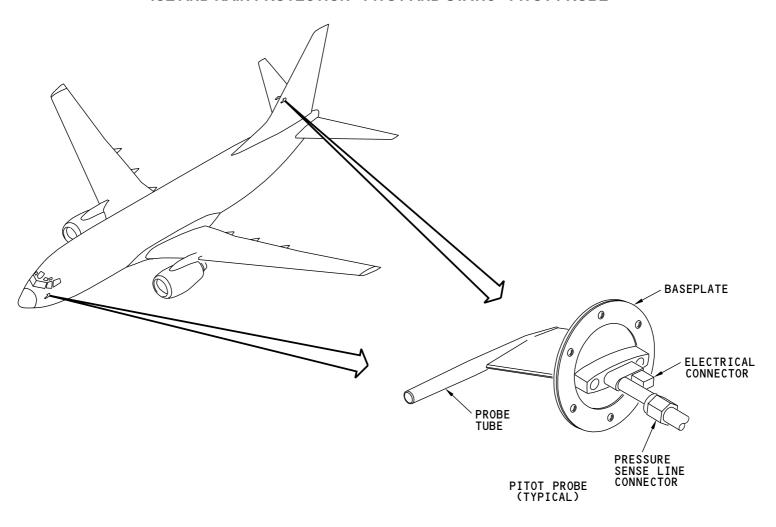
Training Information Point

EFFECTIVITY

NOTE: Use hardwood or plastic tools when you remove or apply the sealant around the probe baseplate. Do not damage the fuselage aluminum cladding when you remove sealant.

DO NOT TOUCH THE PROBES WHILE THE HEATERS ARE ON. BEFORE YOU TOUCH IT, FEEL FOR HEAT RADIATION WARNING FROM THE PROBE. HOT PROBES CAN BURN YOU.

Use a backup wrench when you connect the probe sense line. This will prevent damage to the probe.


30-30-00

30-30-00-010

Page 6

ICE AND RAIN PROTECTION - PITOT AND STATIC - PITOT PROBE

M84834 S0004626448 V1

Page 7 Oct 15/2021

ICE AND RAIN PROTECTION - PITOT AND STATIC - PITOT PROBE

ECCN 9E991 BOEING PROPRIETARY - See title page for details

30-30-00D633A101-SIA

SIA ALL

EFFECTIVITY

ICE AND RAIN PROTECTION - PITOT AND STATIC - PITOT PROBE - FUNCTIONAL DESCRIPTION

Functional Description

The pitot probe anti-icing system uses electric power and resistance-type heaters in the probes.

The system uses 115v ac and 28v dc power. Each probe heater uses 115v ac power. The current detection circuit uses 28v dc power.

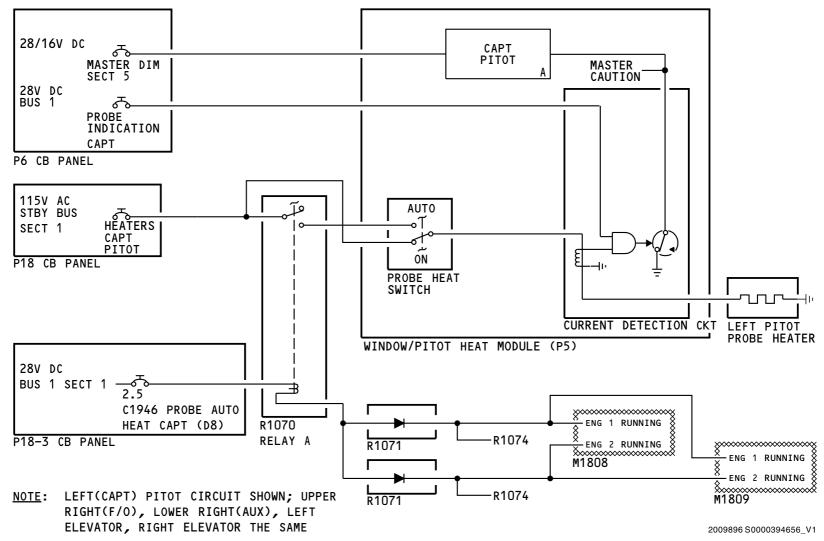
Each pitot probe has a heater. The heater is part of the probe. If the heater fails, you must replace the probe.

The window/pitot heat module does these things:

- · Controls pitot probe heat
- Gives indication of system status.

Put the control switch to the ON position to turn on probe heat. This lets 115v ac power go through the current detection circuitry to the probe heater.

Put the control switch to the AUTO position to automatically turn on probe heat. This lets 115v ac power go through the current detection circuitry to the probe heater when the engines are running.


When the probe heater uses current, the current detection circuit causes the amber light to go out. If the probe heater does not use current, the circuit causes these indications:

- Amber CAPT PITOT light comes on
- · Amber L ELEV PITOT light comes on
- Amber F/O PITOT light comes on
- Amber R ELEV PITOT light comes on
- Amber AUX PITOT light comes on
- MASTER CAUTION and ANTI-ICE annunciator lights come on.

30-30-00

ICE AND RAIN PROTECTION - PITOT AND STATIC - PITOT PROBE - FUNCTIONAL DESCRIPTION

ICE AND RAIN PROTECTION - PITOT AND STATIC - PITOT PROBE - FUNCTIONAL DESCRIPTION

30-30-00 **EFFECTIVITY** SIA ALL D633A101-SIA

Page 9 Oct 15/2021

ICE AND RAIN PROTECTION - PITOT AND STATIC - ANGLE OF ATTACK SENSOR

Purpose

The angle of attack (AOA) sensor anti-icing system prevents ice on the vane. This prevents false air data signals that ice can cause.

Physical Description

The AOA sensor has these parts:

- Case
- Vane
- Electrical connectors (2)
- Alignment pins (2).

NOTE: Angle of Attack sensor is also called Alpha Vane.

Location

There are two AOA sensors. One on each side of the forward fuselage.

General

The AOA sensors have these two integral heaters:

- Vane heater
- · Case heater.

Training Information Point

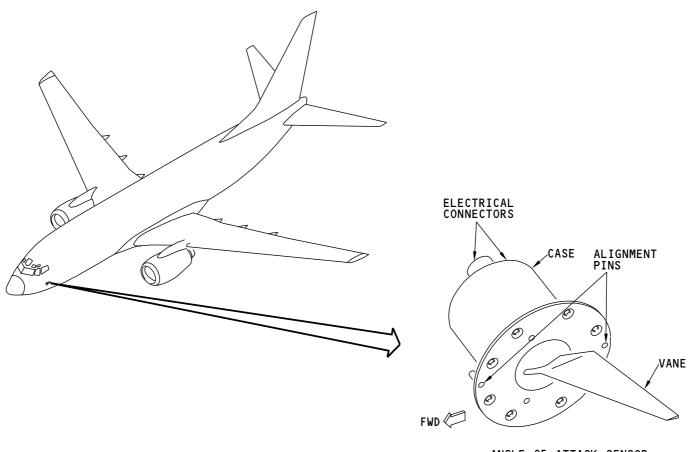
You install the AOA sensor from the outside of the airplane.

See the navigation chapter for more information on the AOA sensor. (SECTION 34-21)

DO NOT TOUCH PROBES WHILE HEATERS ARE ON. TEST HEATERS FOR OPERATION BY FEELING FOR HEAT RADIATION IN THE NEAR VICINITY OF HEATER BEING SUBJECTED TO TEST TO AVOID POSSIBILITY OF PERSONNEL BEING BURNED.

EFFECTIVITY

30-30-00


SIA ALL

Page 10

ICE AND RAIN PROTECTION - PITOT AND STATIC - ANGLE OF ATTACK SENSOR

ANGLE OF ATTACK SENSOR

M84840 S0004626458 V1

ICE AND RAIN PROTECTION - PITOT AND STATIC - ANGLE OF ATTACK SENSOR

EFFECTIVITY SIA ALL

30-30-00

Page 11 Oct 15/2021

ICE AND RAIN PROTECTION - PITOT AND STATIC - ANGLE OF ATTACK SENSOR - FUNCTIONAL DESCRIPTION

Functional Description

The angle of attack sensor anti-icing system uses electric power and resistance-type heating elements.

The system uses 115v ac and 28v dc power. The sensor heat elements use 115v ac power. The current detection circuit uses 28v dc power.

Put the control switch to the ON position to turn on the sensor heat. This lets 115v ac power through the current detection circuit to the sensor heaters.

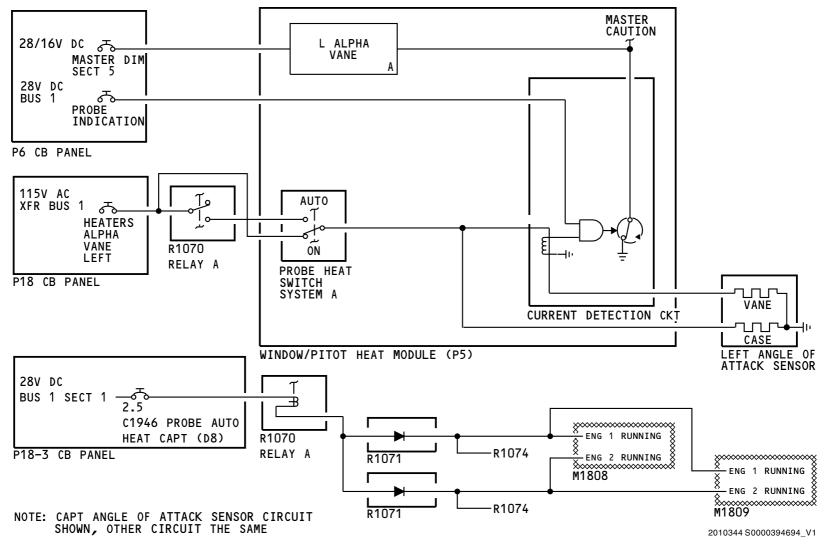
Put the control switch to the AUTO position to automatically turn on sensor heat. This lets 115v ac power go through the current detection circuitry to the sensor heaters when the engines are running.

When the vane heater uses current, the current detection circuit causes the ALPHA VANE amber light to go out. If the vane heater does not use current, the circuit causes these indications:

- Amber L (R) ALPHA VANE light comes on
- MASTER CAUTION and ANTI-ICE annunciator lights come on.

Training Information Point

The current detection circuit does not monitor the case heat element.


If the vane heater element fails, you must replace the sensor.

EFFECTIVITY

30-30-00

ICE AND RAIN PROTECTION - PITOT AND STATIC - ANGLE OF ATTACK SENSOR - FUNCTIONAL DESCRIPTION

ICE AND RAIN PROTECTION - PITOT AND STATIC - ANGLE OF ATTACK SENSOR - FUNCTIONAL DESCRIPTION

SIA ALL

EFFECTIVITY

D633A101-SIA

Page 13 Oct 15/2021

ICE AND RAIN PROTECTION - PITOT AND STATIC - TAT PROBE

Purpose

The total air temperature (TAT) probe anti-icing system makes sure there is no ice on the TAT probe. This prevents false air data signals that ice can cause.

Physical Description

The total air temperature probe has these parts:

- · Electrical connector
- · Base plate
- Strut
- Ram air sense tube.

Location

The TAT probe is on the left side of the forward fuselage.

General

There is one TAT probe on the airplane. The probe has one heating element. If the element fails, you must replace the probe.

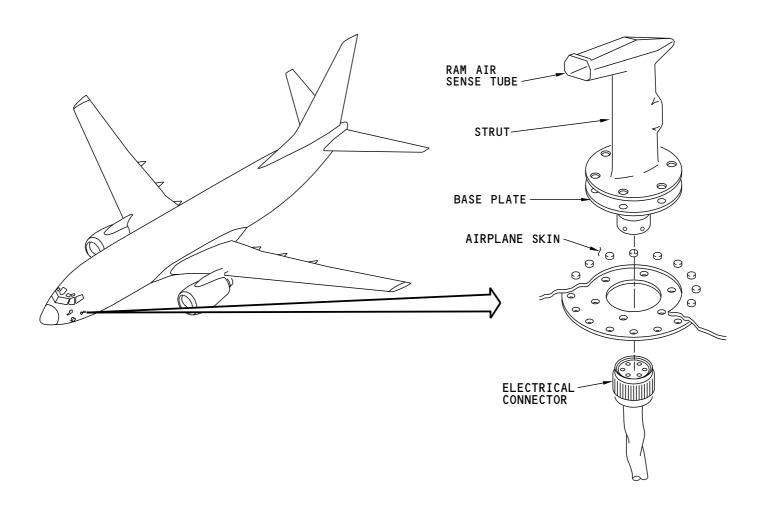
Training Information Point

DO NOT TOUCH PROBES WHILE HEATERS ARE ON. TEST HEATERS FOR OPERATION BY FEELING FOR HEAT RADIATION IN THE NEAR VICINITY OF HEATER BEING SUBJECTED TO TEST TO AVOID POSSIBILITY OF PERSONNEL BEING BURNED.

When you replace the TAT probe, make sure the airplane electrical lead does not fall down into the fuselage. Wires that fall into the fuselage can be difficult to get.

NOTE: Use only hardwood or plastic tools when you remove or apply the sealant around the probe base plate. Do not damage the fuselage aluminum cladding when you remove sealant.

EFFECTIVITY


SIA ALL

30-30-00-030

30-30-00

ICE AND RAIN PROTECTION - PITOT AND STATIC - TAT PROBE

M84843 S0004626464_V1

ICE AND RAIN PROTECTION - PITOT AND STATIC - TAT PROBE

EFFECTIVITY
SIA 702-714, 716

D633A101-SIA

ECCN 9E991 BOEING PROPRIETARY - See title page for details

30-30-00

Page 15 Oct 15/2023

ICE AND RAIN PROTECTION - PITOT AND STATIC - TAT PROBE - FUNCTIONAL DESCRIPTION

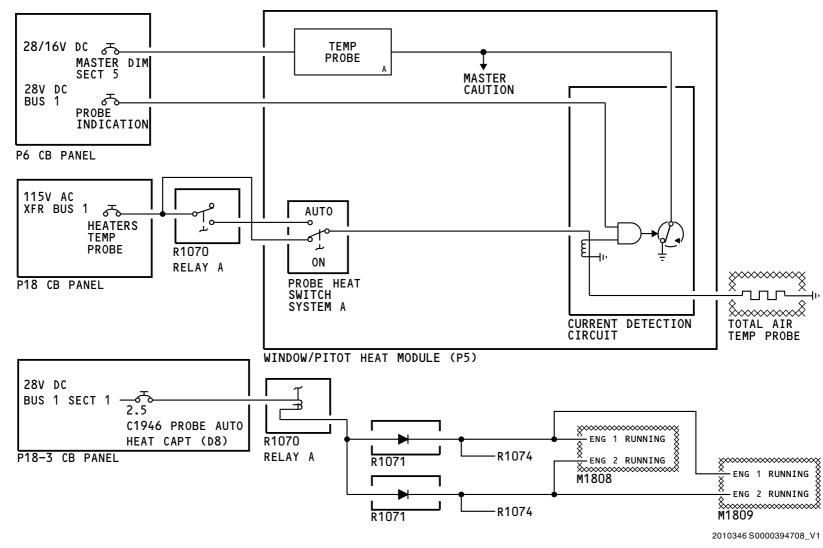
Functional Description

The total air temperature (TAT) probe anti-icing system uses electric power and resistance-type heating elements.

The system uses 115v ac and 28v dc power. The probe heating element uses 115v ac power. The current detection circuit uses 28v dc power.

Put the control switch to the ON position to turn on the probe heat. This lets 115v ac power through the current detection circuit to the probe heater.

Put the control switch to the AUTO position to automatically turn on probe heat. This lets 115v ac power go through the current detection circuitry to the probe heater when the engines are running.


When the probe heater uses current, the current detection circuit causes the amber TEMP PROBE light to go out. If the probe heater does not use current, the circuit causes these indications:

- · Amber TEMP PROBE light comes on
- MASTER CAUTION and ANTI-ICE annunciator lights come on.

EFFECTIVITY 30-30-00

ICE AND RAIN PROTECTION - PITOT AND STATIC - TAT PROBE - FUNCTIONAL DESCRIPTION

ICE AND RAIN PROTECTION - PITOT AND STATIC - TAT PROBE - FUNCTIONAL DESCRIPTION

30-30-00 **EFFECTIVITY** SIA ALL D633A101-SIA

Page 17 Oct 15/2021

ICE AND RAIN PROTECTION - PITOT AND STATIC - OPERATION

Pitot and Static Anti-Icing

The PITOT HEAT switches control air data probe heat. They are two position toggle switches:

- ON
- AUTO.

Put the switches in the ON position to heat the air data probes.

Put the switches in the AUTO position to automatically apply heat to the air data probes when the engines are running.

The PITOT HEAT A switch controls heat to these system A probes:

- Captain pitot
- · Left elevator pitot
- · Left alpha vane
- Total air temperature (TAT) probe.

The PITOT HEAT B switch controls heat to these system B probes:

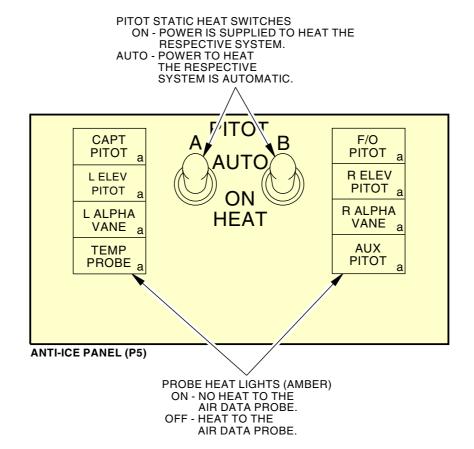
- · First officer pitot
- Auxiliary pitot
- Right elevator pitot
- · Right alpha vane.

Indication

There is an indication light for each air data probe. These are the indications:

- The light goes off when the related air data probe has heat
- The light comes on when the related air data probe does not have heat.

The system indication lights have the press-to-test function. You can also use the master dim and test switch to do a test of the lights.


SIA ALL

30-30-00

Page 18

ICE AND RAIN PROTECTION - PITOT AND STATIC - OPERATION

2010230 S0000394456_V2

ICE AND RAIN PROTECTION - PITOT AND STATIC - OPERATION

SIA ALL
D633A101-SIA

30-30-00

Page 19 Oct 15/2021

THIS PAGE IS INTENTIONALLY LEFT BLANK

ICE AND RAIN PROTECTION - CTRL CABIN - INTRODUCTION

Purpose

The control cabin window anti-icing system improves window impact strength and prevents ice formation on the flight compartment windows.

General Description

The control cabin anti-icing system uses electrical power to heat the flight compartment windows.

The controls and indications for the control cabin window anti-icing system are on the P5 overhead panel.

Window heat control units (WHCUs) are part of the control cabin window anti-icing system. The WHCUs do these things:

- · Monitor window temperatures
- · Supply ON and OVERHEAT system indication
- Do system tests
- · Program power output to the windows.

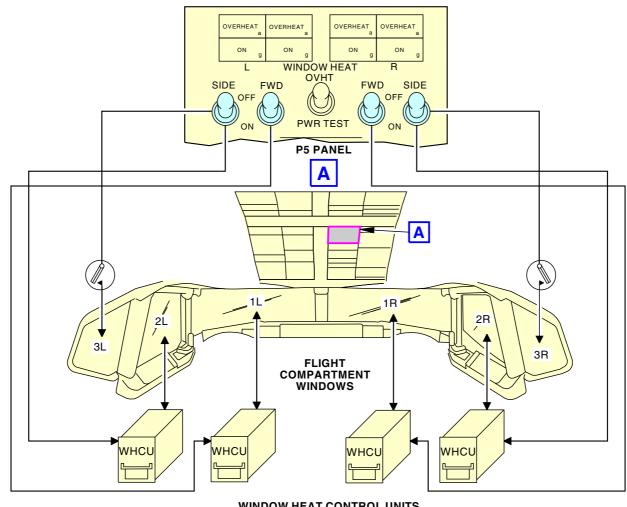
The WHCUs control power to these windows:

- · No. 1 left and right
- · No. 2 left and right.

Thermal switches monitor window temperature and control power to these windows:

No. 3 left and right

Windows in the thermal switch control systems are not part of the P5 overhead panel indication and test functions.


EFFECTIVITY

30-41-00

SIA ALL

ICE AND RAIN PROTECTION - CTRL CABIN - INTRODUCTION

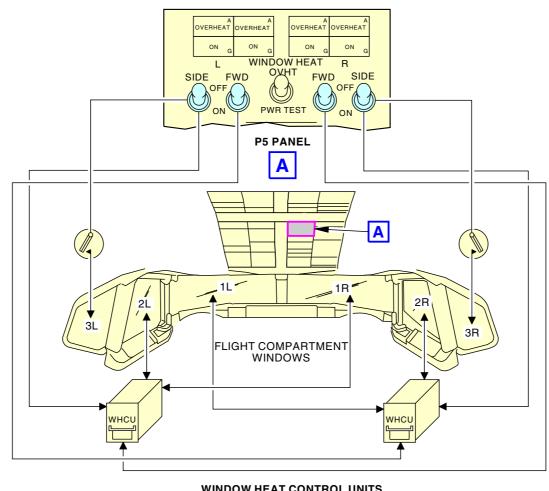
WINDOW HEAT CONTROL UNITS (EE COMPARTMENT)

1451363 S0000263930 V2

ICE AND RAIN PROTECTION - CTRL CABIN - INTRODUCTION

EFFECTIVITY
SIA 702-714

D633A101-SIA


ECCN 9E991 BOEING PROPRIETARY - See title page for details

30-41-00

Page 3 Oct 15/2023

ICE AND RAIN PROTECTION - CTRL CABIN - INTRODUCTION

WINDOW HEAT CONTROL UNITS (EE COMPARTMENT)

3045955 S0000812670 V1

ICE AND RAIN PROTECTION - CONTROL CABIN - INTRODUCTION

EFFECTIVITY
SIA 716-999

D633A101-SIA

ECCN 9E991 BOEING PROPRIETARY - See title page for details

30-41-00

Page 4 Oct 15/2023

THIS PAGE IS INTENTIONALLY LEFT BLANK

ICE AND RAIN PROTECTION - CTRL CABIN - WINDOW HEAT CONDUCTIVE COATING AND SENSOR

General

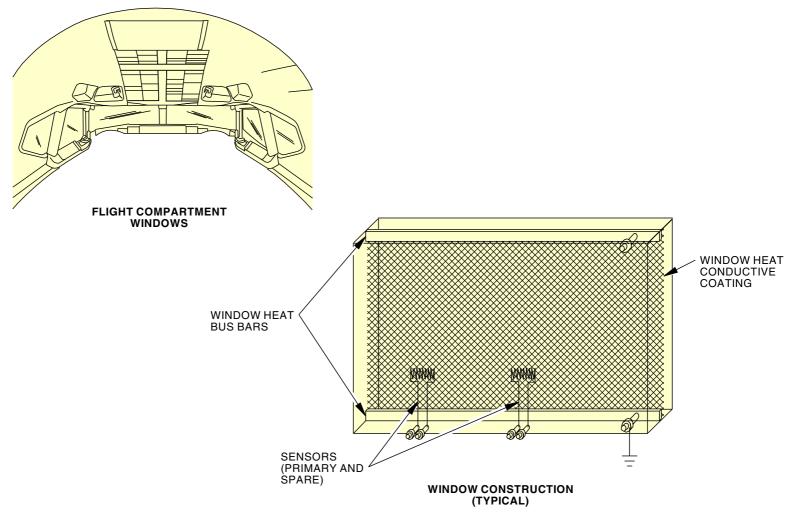
The flight compartment windows are of laminate construction. One layer is made of a conductive coating. Electric current from the window heat system flows through the conductive coating. The resistance of the conductive coating produces heat and warms the window.

Power terminals and bus bars in the windows connect the conductive paste to system power.

Windows 1 and 2 have resistance type temperature sensors for feedback to the window heat control units. There are two sensors in each window:

- · A primary sensor
- · A spare sensor.

The WHCUs use only one sensor. If the primary sensor fails, use the spare sensor. This prevents window removal for a single sensor failure.


The other windows do not use window heat control units and do not have sensors. The thermal switches control the window heat power to these windows.

30-41-00

SIA ALL

ICE AND RAIN PROTECTION - CTRL CABIN - WINDOW HEAT CONDUCTIVE COATING AND SENSOR

M84788 S0004626481_V2

ICE AND RAIN PROTECTION - CTRL CABIN - WINDOW HEAT CONDUCTIVE COATING AND SENSOR

SIA ALL
D633A101-SIA

30-41-00

Page 7 Oct 15/2021

THIS PAGE IS INTENTIONALLY LEFT BLANK

ICE AND RAIN PROTECTION - CTRL CABIN - WINDOW HEAT CONTROL UNIT

Purpose

The window heat control units (WHCUs) do these things:

- · Sense window temperature
- Apply current to the window heat system when necessary
- Control current to the window heat conductive coating to prevent thermal shock
- Control the P5-9 window heat status indication
- Have circuitry for P5-9 OVHT and PWR TEST
- BITE.

| SIA 702-714

The windshield sensor switches are for the number 1 windows only. The windshield sensor switches let you change the primary sensor to the spare sensor.

SIA ALL

Location

SIA 702-714

The window heat control units are in the EE compartment. Two are on the E4-2 shelf and two are on the E2-1 shelf.

SIA 716-999

The window heat control units are in the EE compartment. One is on the E4-2 shelf and one is on the E2-1 shelf.

SIA 702-714

The windshield sensor switches are on the forward outboard E4 stanchion rack.

SIA ALL

General Description

SIA 702-714

There are four identical WHCUs. Each WHCU controls the heat to one window.

SIA 716-999

There are two identical WHCUs. Each WHCU controls the heat to two windows.

SIA ALL

The WHCUs get 115v ac for control and indication of window heat to the No.1 and No. 2 windows.

SIA 702-714

WHCU output power goes to a variable voltage terminal strip. Power to the window is off of the terminal that best matches the window power requirements. This is a function of window size and the condition of its conductive layer.

SIA ALL

Training Information Point

OBEY THE ELECTROSTATIC DISCHARGE PROCEDURES TO HANDLE THE WINDOW HEAT CONTROL UNIT. DAMAGE TO THE WINDOW HEAT CONTROL UNIT CAN OCCUR.

The WHCUs have front face BITE that isolates system faults to the LRU interface level.

EFFECTIVITY

SIA ALL

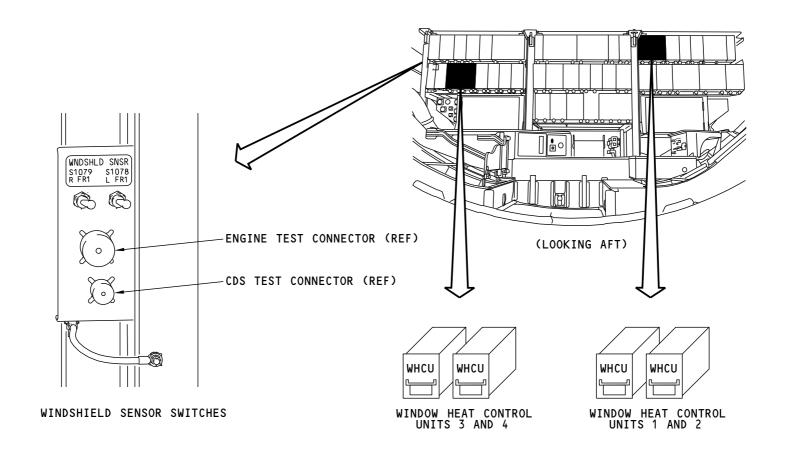
30-41-00

Page 9 Oct 15/2023

ICE AND RAIN PROTECTION - CTRL CABIN - WINDOW HEAT CONTROL UNIT

For the front windows, you do a test of the resistance of the sensors with the windshield sensor switches on the forward outboard E4 stanchion rack.

For more information on the engine test connector see the FADEC system (SECTION 73-21).


EFFECTIVITY

30-41-00

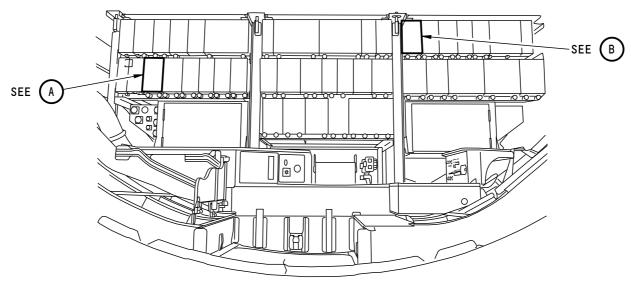
SIA ALL

ICE AND RAIN PROTECTION - CTRL CABIN - WINDOW HEAT CONTROL UNIT

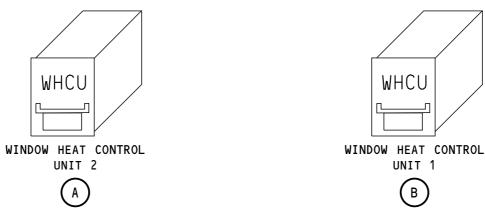
M84865 S0004626483_V1

ICE AND RAIN PROTECTION - CTRL CABIN - WINDOW HEAT CONTROL UNIT

SIA 702-714


D633A101-SIA

30-41-00


Page 11 Oct 15/2023

ICE AND RAIN PROTECTION - CTRL CABIN - WINDOW HEAT CONTROL UNIT

(VIEW IN THE AFT DIRECTION)

2372059 S0000542402_V1

ICE AND RAIN PROTECTION - CTRL CABIN - WINDOW HEAT CONTROL UNIT

EFFECTIVITY

THIS PAGE IS INTENTIONALLY LEFT BLANK

ICE AND RAIN PROTECTION - CTRL CABIN - WINDOW HEAT CONTROL UNIT TERMINAL CONNECTIONS

Purpose

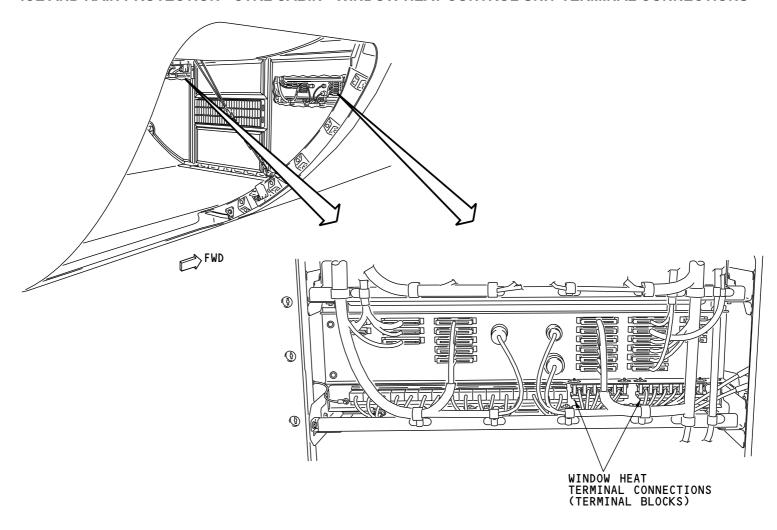
The window heat terminal connections provide a selection of voltages from an auto transformer in the window heat control unit (WHCU) to match the resistance of the window conductive coating.

Location

The window heat terminal connections are behind the window heat control units in the EE compartment. You get access to the connections through access panels in the forward cargo compartment.

Physical Description

The window heat terminal connections consist of taps on the terminal blocks. On No. 1 windows, five taps are used. On No. 2 windows, six taps are used.


Training Information Point

When a window is replaced, the new window has the resistance identified by a code etched in the windshield glass. The code tells you the proper transformer tap. If the window does not heat properly, check the conductive coating resistance and select the proper transformer tap.

ICE AND RAIN PROTECTION - CTRL CABIN - WINDOW HEAT CONTROL UNIT TERMINAL CONNECTIONS

M84864 S0004626486_V1

ICE AND RAIN PROTECTION - CTRL CABIN - WINDOW HEAT CONTROL UNIT TERMINAL CONNECTIONS

SIA 702-714

30-41-00

Page 15 Oct 15/2023

ICE AND RAIN PROTECTION - CTRL CABIN - WINDOW HEAT CONTROL UNIT - GENERAL DESCRIPTION

General

The window heat control units heat these windows:

- 1L
- 2L
- 1R
- 2R.

The window heat control units use 115v ac and 28v dc for indication and control. The systems use 115v ac for window heat power.

The window and pitot heat control panel P5-9 has switches and lights for system control and indication. The window heat switches control the WHCUs and the window heat systems.

SIA 702-714

Each WHCU controls electric heat to one window.

SIA 716-999

Each WHCU controls electric heat to two windows.

SIA ALL

The WHCUs monitors the window temperatures and heats the windows with electric current when the window is cold.

SIA 702-714

The power output from the WHCUs is from the variable voltage terminal strips. The WHCU output voltage are matched with the power requirement of each window.

SIA ALL

SIA ALL

The windows are of laminate construction, and have a layer of conductive paste. Bus bars on the windows connect the conductive layer to airplane wiring. Electric current heats the window as it moves through this layer of window structure.

Window Heat Control

When you put the WINDOW HEAT switch in the ON position you energize the system.

The WHCU monitors the window temperature sensor.

If the window temperature is less than 100°F (37°C), the WHCU sends electric current to the window to heat it. The application of power to the window is by a ramp function to prevent thermal shock to the window.

As the window gets near its target temperature (110°F (43°C) nominal), the WHCU ramps down electric current to the window. This prevents temperature overshoot.

When there is current flow to the window, sense circuitry in the WHCU energizes the P5-9 green ON light circuit. The ON light comes on. This gives an indication that the window heat circuit is active.

If the window is warmer than the target temperature when the system switch is on, these things are true:

- · Window heat is not necessary
- The WHCU does not send current to the window
- The P5-9 green ON light is off.

A PWR TEST switch on the P5 overhead panel gives the crew a confidence test of the window heat system when the window is warm. The switch does a test of all the WHCU window heat systems that are ON. Hold the switch to the PWR TEST position to do the test. This causes the WHCU to send current to the window and the green P5 overhead panel ON light comes on.

Release the PWR TEST switch as soon as you verify the green ON light, or you can overheat the window. This will cause the WHCU overheat protection circuitry to activate.

EFFECTIVITY

ICE AND RAIN PROTECTION - CTRL CABIN - WINDOW HEAT CONTROL UNIT - GENERAL DESCRIPTION

SIA 716-999

Window Heat System Operation

The temperature sensor selection operation is set by the WHCU BITE panel. There are two modes of operation:

- Override Mode In override mode, the OVERRIDE MODE green LED on the BITE panel illuminates. The WHCU will automatically select a working sensor when a sensor fails. No failure indication will annunciate in the flight compartment. Only when both sensors fail will the P5-9 OVERHEAT light turn on. Also in the OVERRIDE mode, if the primary sensor has an intermittent defect, the WHCU will possibly become defective. As a result, the P5-9 OVERHEAT light will come on.
- Normal Mode The sensor used by WHCU will alternate every time the window ON/OFF control switch is cycled. The OVERRIDE MODE LED will not be illuminated on the WHCU BITE panel. When the selected sensor fails, the OVERHEAT light on the P5-9 panel will illuminate. The pilot will have to cycle the window heat control ON/OFF switch to get the WHCU to select the other sensor. At the next switch cycle, the WHCU will switch back to the failed sensor. The WHCU BITE panel will show the failed sensor indication. To prevent alternating between the working sensor and failed sensor, the OVERRIDE mode can be selected. Then only the working sensor will be active.

Single Sensor Operation (Window #2, optional)

 If the WHCU is not connected to the Window #2 spare sensor and the program pin is not connected, the WHCU will use single sensor operation. If the working sensor fails, the OVERHEAT light will turn on and no heat will be provided to the window. The WHCU program pin (P1-5) is open in single sensor operation and the override mode will not be functional. Dual Sensor Operation (Window #2, optional)

 To take advantage of a spare sensor, wiring provisions for the second sensor to the left and right side windows are available. In order to use the second sensor, the WHCU program pin (P1-5) is grounded and a section of wire is added inside the window frame. Adding the wire to the window frame makes that window incompatible with airplanes that are not configured for the dual sensor operation.

Electrical Power Source

 Window heat system uses 115VAC transfer bus 1 and 2 for window heat control unit, which provides system control, and indication. The WHCU has internal transformers with auto-adjustable taps to control voltage for window heat power. Electric current flows through the window conductive coating to heat the windows. The window resistance is automatically measured at power up. The WHCU auto-adjusts the output voltage and power to the window accordingly.

Bus Power Transfer Operation

To avoid nuisance indications during bus power interruptions, WHCU software receive low voltage trigger from hardware (AC input is less than 80 volts). This trigger generates a processor NMI (non-maskable interrupt). During the NMI (non-maskable interrupt) process, the WHCU output is temporarily stopped. Any faults generated during this process are also masked. Normal operation (all fault monitoring and power outputs) is restored after normal power (input power is above 80 VAC) is restored.

SIA ALL

WHCU Thermal Protection

The Window Heat Control Unit has internal hardware protection for transformer overheat failures. The Hardware protection will shut down the power if the transformer temperature reaches 230°F (110°C). Software protection will gradually limit the power if the WHCU internal transformer temperature exceeds 194°F (90°C). Power will gradually decrease as follows:

30-41-00

SIA ALL

EFFECTIVITY

ICE AND RAIN PROTECTION - CTRL CABIN - WINDOW HEAT CONTROL UNIT - GENERAL DESCRIPTION

Internal Transformer Temperature	Output Power		
<194°F (90°C)	100%		
>194°F (90°C)	80%		
>212°F (100°C)	50%		
>230°F (110°C)	0% (Hardware Shutdown)		

A window heat test switch on the P5-9 panel gives the crew a confidence test of the WHCU overheat protection circuitry during system operation. The switch does a test of all the WHCU window heat systems that are switched ON. Hold the switch to the OVHT position for one second then release to do the test. This causes the WHCU circuitry to simulate a window overheat. The indications of a successful test are the same as an actual overheat condition. To reset the system, move the window heat switch to the OFF position, and then back to the ON position.

Overheat Protection

The WHCUs have overheat protection circuitry.

If the WHCU detects both of these conditions, an overheat trip occurs:

- Window temperature more than 145°F (62°C)
- · Electric current to the window heat circuit.

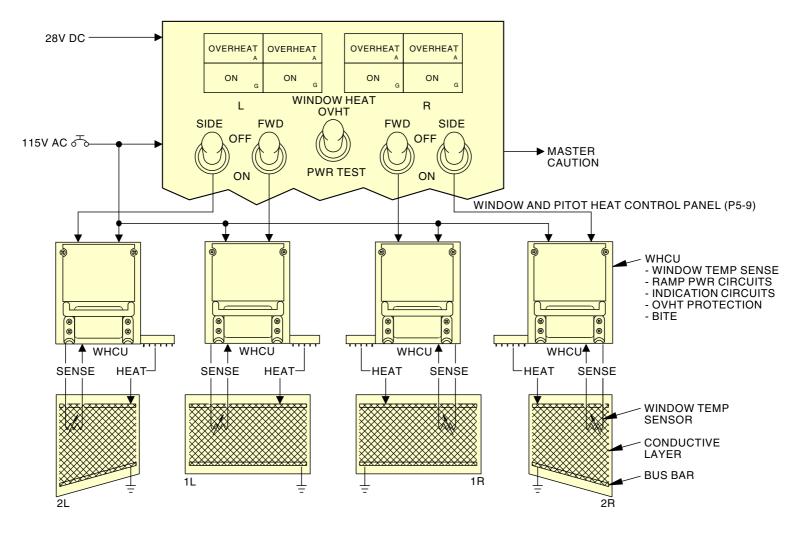
The overheat protection circuit operates only while power is applied to the window. This permits a lower overheat trip setting, and prevents nuisance system trips during operations under conditions of high ambient heat.

An overheat trip causes these things to happen:

- Electric current to the window is cut off
- The green P5-9 green ON light goes out
- The amber P5-9 amber OVERHEAT light comes on
- The MASTER CAUTION and ANTI-ICE annunciator lights come on.

To reset the system, you must move the WINDOW HEAT switch to the OFF position, and then back to the ON position.

An overheat cannot be reset until the window cools.

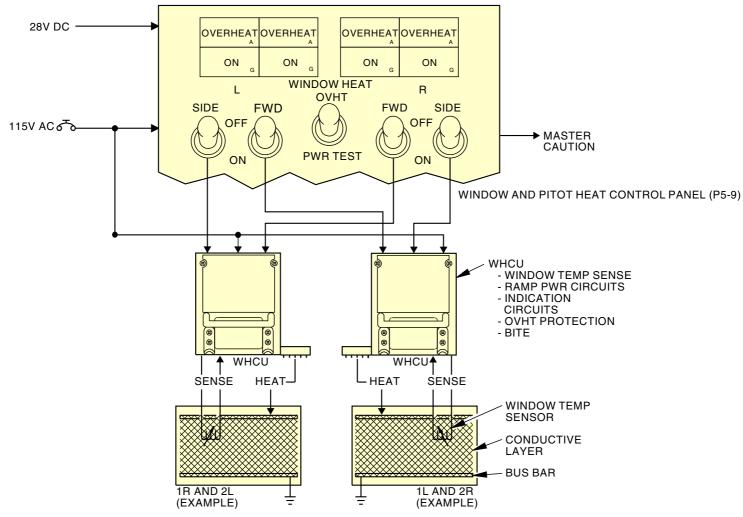

30-41-00

EFFECTIVITY

Page 18

ICE AND RAIN PROTECTION - CTRL CABIN - WINDOW HEAT CONTROL UNIT - GENERAL DESCRIPTION

M84789 S0004626488_V3


ICE AND RAIN PROTECTION - CTRL CABIN - WINDOW HEAT CONTROL UNIT - GENERAL DESCRIPTION

Page 19 Oct 15/2023

ICE AND RAIN PROTECTION - CTRL CABIN - WINDOW HEAT CONTROL UNIT - GENERAL DESCRIPTION

2428772 S0000562044 V3

ICE AND RAIN PROTECTION - CTRL CABIN - WINDOW HEAT CONTROL UNIT - GENERAL DESCRIPTION

EFFECTIVITY SIA 716-999 D633A101-SIA ECCN 9E991 BOEING PROPRIETARY - See title page for details

30-41-00

Page 20 Feb 15/2022

ICE AND RAIN PROTECTION - CTRL CABIN - WINDOW HEAT CONTROL UNIT - FUNCTIONAL DESCRIPTION

Window Heat Control

When you put the window heat switch in the ON position, you energize the system.

The WHCU monitors the window temperature sensor.

SIA 716

If the window temperature is less than 100F (37C), the control circuits keep K1 energized. This sends electric current to the window to heat it. The application of power to the window is by a ramp function to prevent thermal shock to the window. The control circuits energizes K1, this keeps the amber P5 overhead panel OVERHEAT light off.

SIA 702-714, 717-999

If the window temperature is less than 100F (37C), the control circuits keep K1 energized. This sends electric current to the window to heat it. The application of power to the window is by a ramp function to prevent thermal shock to the window. The control circuits energizes K2, this keeps the amber P5 overhead panel OVERHEAT light off.

SIA ALL

As the window gets near its target temperature of 110F (43C), the WHCU ramps down electric current to the window. This prevents temperature overshoot.

When there is current flow to the window, the power demand detector in the WHCU energizes the green ON light circuit. The ON light on P5-9 panel comes on. This gives an indication that the window heat circuit is active.

If the window is warmer than the target temperature when the system switch is ON, these things are true:

· Window heat is not necessary

EFFECTIVITY

- The WHCU does not send current to the window
- The green ON light on P5-9 panel is off.

Overheat Protection

The WHCUs have overheat protection circuitry.

If the WHCU detects both of these conditions, an overheat trip occurs:

- Window temperature more than 145F (62C)
- Electric current to the window heat circuit.

SIA 702-714, 717-999

The overheat protection circuit operates only while power is applied to the window. When an overheat condition is sensed K1 and K2 are relaxed. This removes power from the window. This also provides a ground for the amber OVERHEAT light on P5-9 panel.

SIA 716

The overheat protection circuit operates only while power is applied to the window. When an overheat condition is sensed K1 is relaxed. This removes power from the window. This also provides a ground for the amber OVERHEAT light on P5-9 panel.

SIA ALL

An overheat trip causes these things to happen:

- · Electric current to the window is off
- The green ON light on P5-9 panel is off
- The amber OVERHEAT light on P5-9 panel comes on
- The MASTER CAUTION and ANTI-ICE annunciator lights come on.

To reset the system, move the WINDOW HEAT switch to the OFF position, and then back to the ON position.

An overheat cannot be reset until the window cools.

Training Information Point

There are two temperature sensors in each window:

Primary sensor

30-41-00

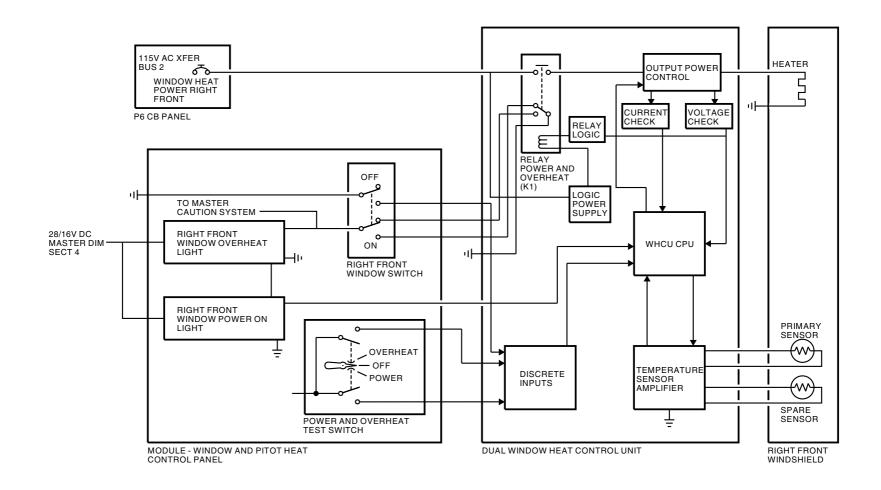
SIA ALL

Oct 15/2023

ICE AND RAIN PROTECTION - CTRL CABIN - WINDOW HEAT CONTROL UNIT - FUNCTIONAL DESCRIPTION

· Spare sensor.

If the primary sensor fails, you can use the spare sensor. This prevents the need to change a window if the primary sensor fails.


SIA ALL

30-41-00

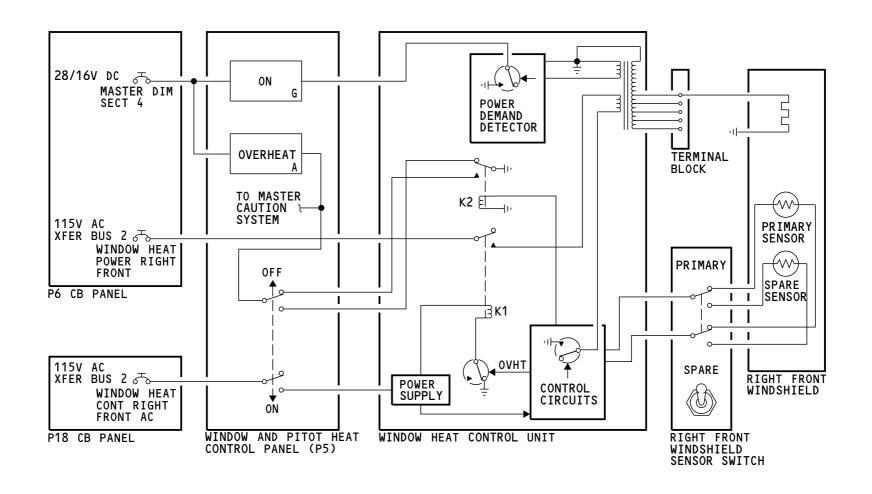
Page 22

ICE AND RAIN PROTECTION - CTRL CABIN - WINDOW HEAT CONTROL UNIT - FUNCTIONAL DESCRIPTION

2507940 S0000589377_V3

ICE AND RAIN PROTECTION - CTRL CABIN - DUAL WINDOW HEAT CONTROL UNIT - FUNCTIONAL DESCRIPTION

SIA 716

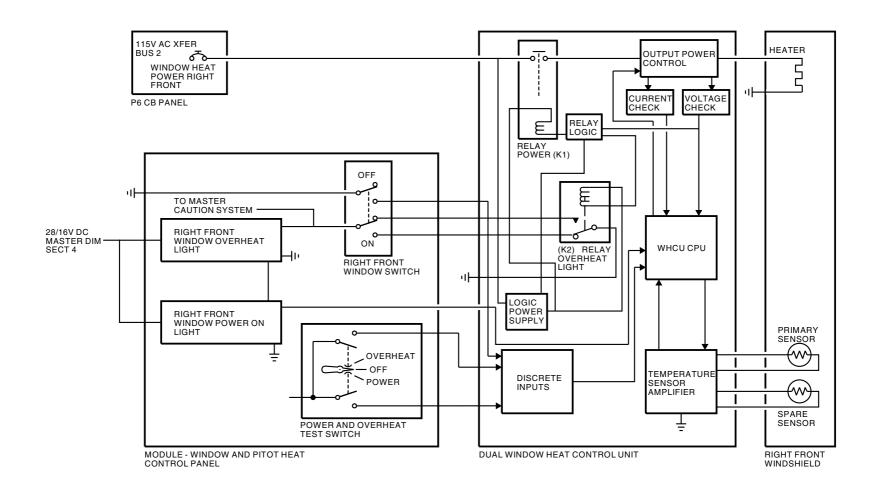

D633A101-SIA

ECCN 9E991 BOEING PROPRIETARY - See title page for details

30-41-00-009

ICE AND RAIN PROTECTION - CTRL CABIN - WINDOW HEAT CONTROL UNIT - FUNCTIONAL DESCRIPTION

M84867 S0004626491_V1


ICE AND RAIN PROTECTION - CTRL CABIN - WINDOW HEAT CONTROL UNIT - FUNCTIONAL DESCRIPTION

EFFECTIVITY
SIA 702-714

D633A101-SIA
ECCN 9E991 BOEING PROPRIETARY - See title page for details

ICE AND RAIN PROTECTION - CTRL CABIN - WINDOW HEAT CONTROL UNIT - FUNCTIONAL DESCRIPTION

2916278 S0000700816_V1

ICE AND RAIN PROTECTION - CTRL CABIN - DUAL WINDOW HEAT CONTROL UNIT - FUNCTIONAL DESCRIPTION

SIA 717-999

D633A101-SIA

ECCN 9E991 BOEING PROPRIETARY - See title page for details

ICE AND RAIN PROTECTION - CTRL CABIN - WINDOW THERMAL SWITCHES

Purpose

Thermal switches on the No. 3 windows control power to the No. 3 windows.

General Description

A bracket with a torsional spring secures the switch to the window.

A conductive paste improves heat transfer from the window to the switch and prevents a temperature lag between the switch and the window.

Functional Description

The thermal switch is a normally-closed, single-pole, snap action bimetallic device. It operates by thermal expansion.

The thermal switches are wired in series with the windows they control.

Put the related side window heat switch to ON to energize the system. 115v ac power passes through a thermal switch to the resistive layer of each window. The resistance of the layer to the current produces heat and warms the window.

When the No. 3 window thermal switch opens at a temperature of 95F (35C) or more. This opens the circuit, and removes power to the windows.

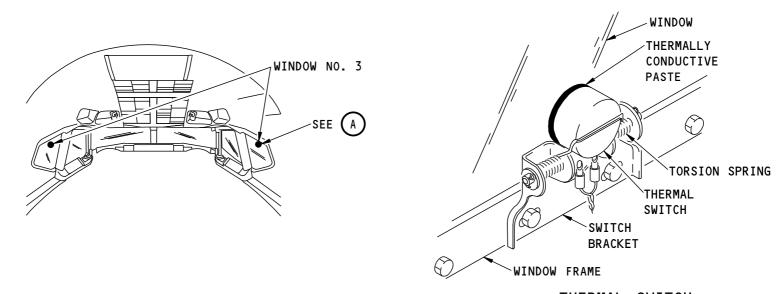
When the No. 3 window thermal switch temperature decreases to 75F (24C), the switch closes and completes the heat circuit. This starts the window heat again.

Training Information Point

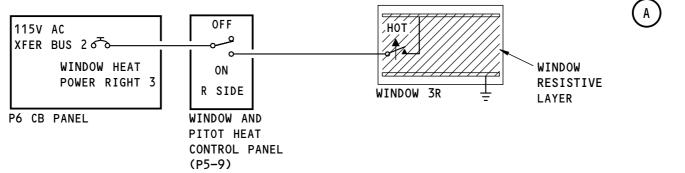
These windows are not part of the anti-ice panel indication or test systems.

These windows do not have overheat protection. If the thermal switch fails or detaches from its conductive paste, the windows can overheat. The windows should be warm to the touch, but not hot. If bubbles appear in the window layers, this may be an indication of window overheat (thermal breakdown and outgassing of vinyl layers).

EFFECTIVITY


30-41-00

SIA ALL


Page 26

ICE AND RAIN PROTECTION - CTRL CABIN - WINDOW THERMAL SWITCHES

THERMAL SWITCH (TYPICAL)

NOTE: RIGHT SIDE WINDOW CIRCUIT SHOWN, LEFT SIDE THERMAL SWITCH CIRCUITS EQUIVALENT.

2249318 S0000504408 V1

ICE AND RAIN PROTECTION - CTRL CABIN - WINDOW THERMAL SWITCHES

SIA ALL

30-41-00

Page 27 Oct 15/2021

THIS PAGE IS INTENTIONALLY LEFT BLANK

ICE AND RAIN PROTECTION - CTRL CABIN - WINDOW HEAT CONTROL UNIT - BITE

Purpose

The WHCUs have front face BITE that isolates system faults to the LRU interface level.

General Description

The BITE circuitry detects failures in these:

- WHCU internal faults
- Window
- Temperature sensor
- · Control power input
- · Bus power input
- · Associated wiring.

The WHCU has a 10-register FAULT HISTORY memory storage capability.

Cycling through the faults show the faults from the most recent to the oldest fault registered in the WHCU.

BITE Test Switches

The WHCU has these switches:

- LAMP TEST
- BIT VERIFY
- FAULT HISTORY
- BIT LAMP RESET.

SIA 702-714

The LAMP TEST switch does a test of the six BIT indicator lamps. This verifies power and indication availability.

SIA 716-999

The LAMP TEST switch does a test of the fourteen BIT indicator lamps. This verifies power and indication availability.

SIA ALL

The BIT VERIFY switch starts a system self test. This does a check of system faults.

The FAULT HISTORY switch shows the last 10 registers one register at a time.

Cycling through the faults show the faults from the most recent to the oldest fault registered in the WHCU.

The BIT LAMP RESET switch clears the fault from the WHCU.

BITE Indications

The BIT TEST OK lamp shows that a BIT VERIFY test is complete and found no faults. The lamp stays on for 15 seconds.

The WHCU has these red fault lamps:

SIA 702-714

- WHCU-LRU
- WINDOW SENSOR
- BUS POWER
- WINDOW POWER
- P5-9/CONTROL POWER.

SIA 716-999

- WHCU-LRU
- WINDOW SENSOR 1
- WINDOW SENSOR 2
- BUS POWER
- WINDOW POWER

30-41-00

EFFECTIVITY

SIA ALL

ICE AND RAIN PROTECTION - CTRL CABIN - WINDOW HEAT CONTROL UNIT - BITE

SIA 716-999 (Continued)

• P5-9.

SIA ALL

The WHCU-LRU lamp shows a failure of the WHCU unit.

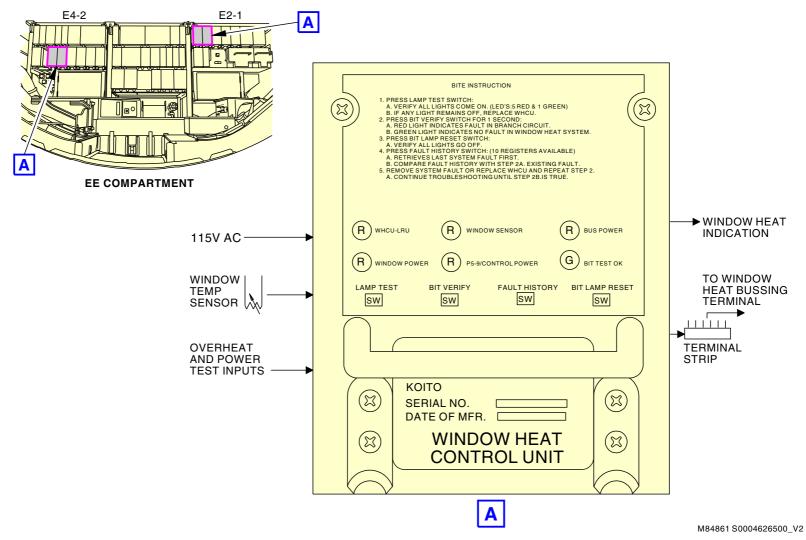
The WINDOW SENSOR lamp shows a failed sensor due to opens, shorts, or wiring problems.

The BUS POWER lamp shows that there is no power to the WCHU bus.

The WINDOW POWER lamp shows that there is no window power or there is over current to the window. This is due to either a window, wiring, or a connector open or shorted problem.

The P5-9/CONTROL POWER lamp shows that there is no power to the WHCU.

EFFECTIVITY

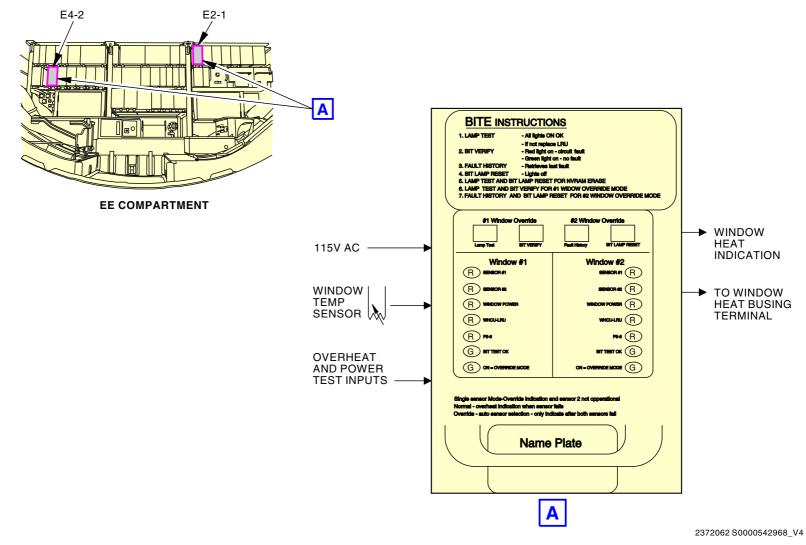

30-41-00

SIA ALL

Page 30

ICE AND RAIN PROTECTION - CTRL CABIN - WINDOW HEAT CONTROL UNIT - BITE

ICE AND RAIN PROTECTION - CTRL CABIN - WINDOW HEAT CONTROL UNIT - BITE


SIA 702-714 STATE OF THE STATE

Page 31 Oct 15/2023

ICE AND RAIN PROTECTION - CTRL CABIN - WINDOW HEAT CONTROL UNIT - BITE

ICE AND RAIN PROTECTION - CTRL CABIN - WINDOW HEAT CONTROL UNIT - BITE

30-41-00

SIA 716-999

EFFECTIVITY

THIS PAGE IS INTENTIONALLY LEFT BLANK

30-42-00

ICE AND RAIN PROTECTION - WINDSHIELD WIPER SYSTEM - INTRODUCTION

Purpose

The windshield wiper system removes rain, sleet, and snow from the No. 1R and No. 1L flight compartment windows.

General

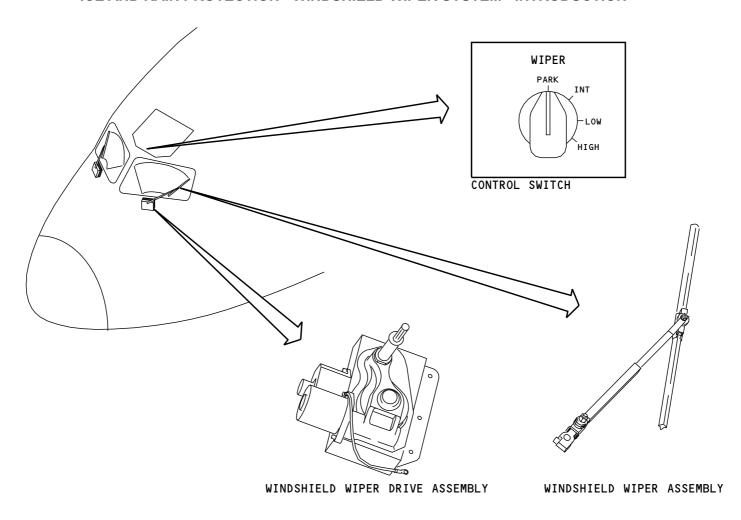
Two wiper control switches on the P5 forward overhead panel give the flight crew control of the system. The system has two windshield wiper and drive assemblies.

Location

The WIPER control switches are on the P5 forward overhead panel.

The two windshield wiper assemblies are on the No. 1R and No. 1L flight compartment windows.

The two windshield wiper drive assemblies are on the No. 1R and No. 1L window sills. You get access to the windshield wiper drive assemblies from under the P7 glareshield.


EFFECTIVITY

30-42-00

SIA ALL

ICE AND RAIN PROTECTION - WINDSHIELD WIPER SYSTEM - INTRODUCTION

M84870 S0004626506 V1

ICE AND RAIN PROTECTION - WINDSHIELD WIPER SYSTEM - INTRODUCTION

SIA ALL

30-42-00

Page 3 Oct 15/2021

ICE AND RAIN PROTECTION - WINDSHIELD WIPER SYSTEM - WINDSHIELD WIPER AND DRIVE ASSEMBLY

Purpose

The windshield wiper and drive assembly does these things:

- · Moves the windshield wiper
- · Controls the force the wiper applies on the windshield
- · Gives rigging adjustments for wiper sweep.

Location

The windshield wipers are in front of the No. 1 right and No. 1 left flight compartment windows.

There are two windshield wiper drive assemblies. They are on the windshield sill beam behind the P1 and P2 panels.

You get access to the windshield wiper drive assemblies through panels under the P7 glareshield.

General Description

Each windshield wiper drive assembly moves its windshield wiper.

Each windshield wiper drive assembly has these parts:

- 28v dc motor
- · Rotary to oscillatory reduction gearbox
- · Output shaft
- Wiper arm
- Wiper blade.

General

SIA ALL

There are two windshield wiper assemblies.

Each windshield wiper assembly has these parts:

- Wiper arm
- · Wiper blade.

The wiper arm adjustment nut sets the force the wiper blade applies to the window.

The arm attachment fittings adjust clocking of the wiper arm to the output shaft of the windshield wiper drive assembly.

The blade attach nut and fittings set the angle between the blade and the wiper arm.

Training Information Point

Do not operate the wipers on dry windshields. This can do these things:

- · Scratch the window
- Decrease wiper blade service life
- Remove windshield hydrophobic (rain repellent) coating.

EFFECTIVITY

30-42-00

ICE AND RAIN PROTECTION - WINDSHIELD WIPER SYSTEM - WINDSHIELD WIPER AND DRIVE ASSEMBLY

WINDSHIELD WIPER AND DRIVE ASSEMBLY

M84872 S0004626509_V2

ICE AND RAIN PROTECTION - WINDSHIELD WIPER SYSTEM - WINDSHIELD WIPER AND DRIVE ASSEMBLY

SIA ALL
D633A101-SIA

30-42-00

Page 5 Oct 15/2021

ICE AND RAIN PROTECTION - WINDSHIELD WIPER SYSTEM - FUNCTIONAL DESCRIPTION

General

The windshield wiper system uses 28v dc power.

Two switches on the P5 forward overhead panel control the two wiper motors.

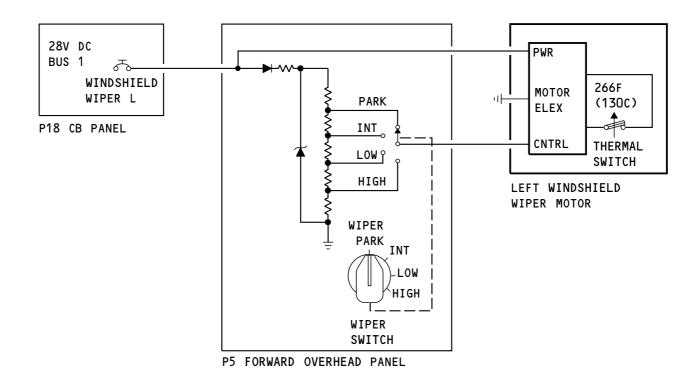
Functional Description

The WIPER switch is a four-position (PARK, INT, LOW, HIGH) selector. It is a voltage divider and sends different voltage signals to the motor electronic control package to provide intermittent, low, and high speed wiper operation.

The motor electronic control package controls the motor speed in response to the WIPER switch position signal.

A thermal switch in the motor assembly cuts out motor operation if the temperature in the motor gets to 266F (130C). The thermal switch resets automatically when the motor cools.

The PARK position will cause both blades to rotate outboard to the lower window edge and stay there.


EFFECTIVITY

30-42-00

SIA ALL

ICE AND RAIN PROTECTION - WINDSHIELD WIPER SYSTEM - FUNCTIONAL DESCRIPTION

NOTE: LEFT SYSTEM IS SHOWN,

RIGHT SYSTEM IS EQUIVALENT.

M84874 S0004626512 V2

ICE AND RAIN PROTECTION - WINDSHIELD WIPER SYSTEM - FUNCTIONAL DESCRIPTION

SIA ALL
D633A101-SIA

30-42-00

Page 7 Oct 15/2021

THIS PAGE IS INTENTIONALLY LEFT BLANK

30-43-00

ICE AND RAIN PROTECTION - RAIN REPELLENT SYSTEM - HYDROPHOBIC WINDSHIELD COATING

Purpose

The hydrophobic windshield coating improves visibility in heavy rain.

Location

Hydrophobic windshield coatings are on the outside surface of the left and right number 1 flight compartment windows.

General Description

Hydrophobic (water repellent) windshield coatings are transparent films. The coatings repel water. This causes water drops to bead up and roll off the windshields. The coatings do not affect windshield strength or optical clarity.

The hydrophobic coatings wear down over time. Wear depends on these things:

- Wiper use
- · Route structure
- Windshield maintenance practices.

As the coatings wear, they do not repel water droplets as satisfactorily. When this happens, apply a new hydrophobic coating on the windshield. It is not necessary to remove the windshield to do this.

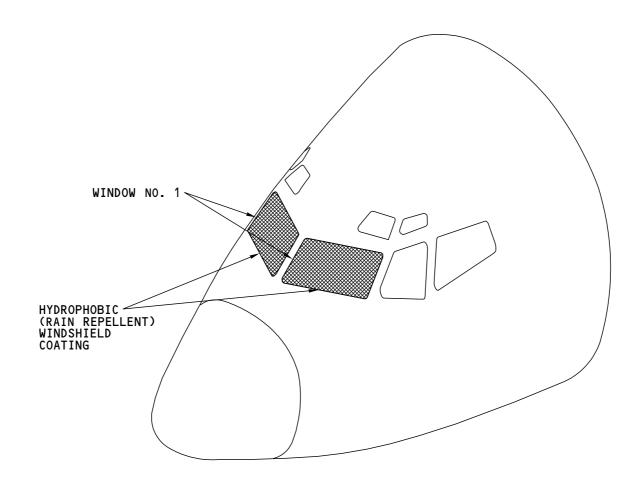
Training Information Point

For maintenance of the hydrophobic coatings, regularly clean the windshields. Use a 50 percent solution of isopropanol in distilled water and a soft cloth to clean the windshields.

Do not use abrasive cleaning pads or cleaners. Do not use cleaning solutions with fluorides.

Make sure the force of the blades on the window is proper. Worn or incorrectly set-up windshield wipers wear the coatings.

EFFECTIVITY


30-43-00

SIA ALL

Page 2

ICE AND RAIN PROTECTION - RAIN REPELLENT SYSTEM - HYDROPHOBIC WINDSHIELD COATING

M84795 S0004626519_V1

ICE AND RAIN PROTECTION - RAIN REPELLENT SYSTEM - HYDROPHOBIC WINDSHIELD COATING

SIA ALL

D633A101-SIA

30-43-00

Page 3 Oct 15/2021

ICE AND RAIN PROTECTION - RAIN REPELLENT SYSTEM - HYDROPHOBIC WINDSHIELD COATING

THIS PAGE IS INTENTIONALLY LEFT BLANK

30-71-00

ICE AND RAIN PROTECTION - WATER LINES - INTRODUCTION

Purpose

The water and toilet drain anti-ice system prevents ice formation in theses areas:

- · Potable water system service and supply components
- · Gray water system drain components
- Vacuum waste system drain and service components.

General

It is important to prevent ice formation in the water and toilet systems. Ice formation in the systems can cause these problems:

- · Ice expansion damage
- Line blockage that prevents normal system operation
- Line blockage that prevents normal service operations
- Ice formations on the forward drain mast can break off and damage airplane structure.

The water and toilet drain anti-icing systems use electric power for heat.

These system components have integral heaters:

- · Service panel fittings
- Drain masts
- · Hoses with integral heating elements.

Components without integral heaters get heat from these components:

- Heater tape (ribbon heaters)
- · Heater blankets.

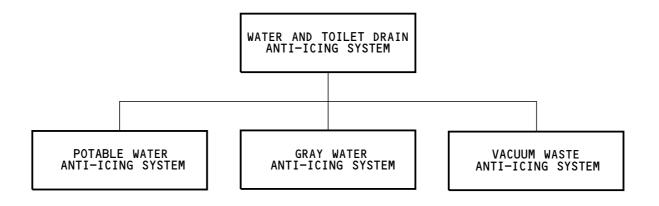
Training Information Point

The water and toilet drain anti-icing systems require electric power.

If you park the airplane in freezing conditions with no electric power, drain the water and toilet systems to prevent ice formation.

EFFECTIVITY

Pull the circuit breakers for the water tank compressor and water heaters


before you drain the potable water system.

30-71-00

SIA ALL

Page 2

ICE AND RAIN PROTECTION - WATER LINES - INTRODUCTION

M84879 S0004626527_V1

ICE AND RAIN PROTECTION - WATER LINES - INTRODUCTION

SIA ALL

EFFECTIVITY

D633A101-SIA

30-71-00

Page 3 Oct 15/2021

ICE AND RAIN PROTECTION - WATER LINES - POTABLE WATER - FUNCTIONAL DESCRIPTION

Purpose

The potable water anti-icing system prevents ice formation in these areas:

- · The potable water fill fitting
- · The potable water fill hose
- · The potable water supply hoses
- · The potable water drain valve/lines.

Potable Water Fill Fitting

The potable water fill fitting has a built-in heater element.

The fitting heater uses 28v dc power. A thermostatic switch controls power to the fitting. Heat is constant and automatic when power is on the airplane.

Potable Water Fill Hose

The potable water fill hose has a built-in heater element.

The hose heater element uses 115v ac power. A thermostatic switch controls power to the hose. Heat is constant and automatic when power is on the airplane.

Potable Water Supply Hoses

Some of the potable water supply hoses have built-in heater elements.

The hoses use 115v ac power. Thermostatic switch in the hose controls heat to the hoses.

Heat to the hoses is automatic when power is on the airplane.

Potable Water Drain Valve/Lines

The heaters on the potable water tank drain valve and drain line hose use 115v ac power. Thermostatic and thermal cutoff switches control electric power to the heaters.

Training Information Point

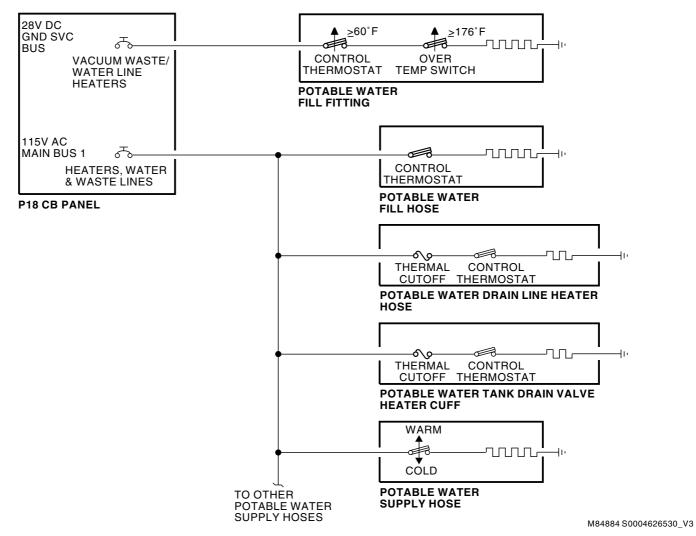
It is important to prevent ice formation in the water tank installations. Ice formation in these tank areas can cause these problems:

- Ice expansion damage
- · Line blockage preventing normal system operation
- Damage to lavatory and galley heater systems with no available water.

The heater is started any time power is applied to the airplane.

If the airplane is parked in freezing conditions with no electrical power, drain the water and toilet systems to prevent ice formation.

Make sure to open the circuit breakers for the water tank compressor and water heaters to prevent damage to a drained potable water system. These circuit breakers can remain closed if the potable water system is refilled immediately.


EFFECTIVITY

30-71-00

SIA ALL

ICE AND RAIN PROTECTION - WATER LINES - POTABLE WATER - FUNCTIONAL DESCRIPTION

ICE AND RAIN PROTECTION - WATER LINES - POTABLE WATER - FUNCTIONAL DESCRIPTION

30-71-00

SIA ALL

30-71-00-004

EFFECTIVITY

D633A101-SIA

ICE AND RAIN PROTECTION - WATER LINES - GRAY WATER - FUNCTIONAL DESCRIPTION

Purpose

The gray water anti-icing system prevents ice formation in these areas:

- The gray water drain lines
- · The drain masts.

Gray Water Drain Lines

The hose heaters warm the gray water drain lines.

The hose heaters use 115v ac power. A thermostatic switch controls electric power to the heaters. Heat is constant and automatic when power is on the airplane.

An in-line thermostatic switch controls heat to the inlet line of the forward drain mast.

Drain Masts

The drain masts have integral electric heater elements.

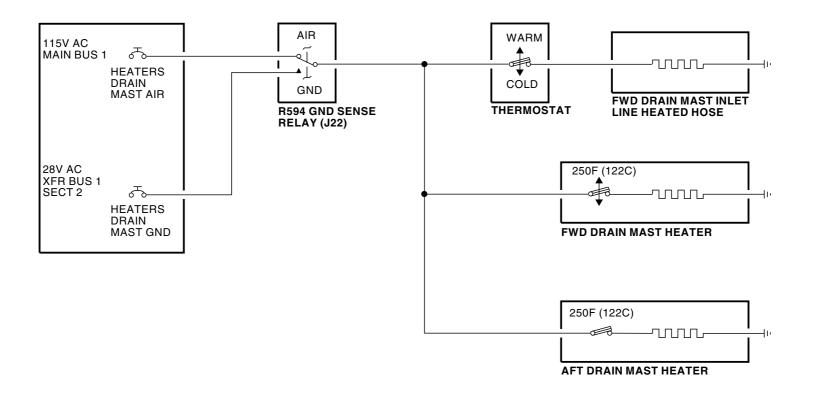
Heat to the mast is constant and automatic when power is on the airplane.

The drain mast heating elements operate on these two voltages:

- 115v ac in flight
- 28v ac on the ground.

The drain mast heat uses a reduced voltage on the ground to prevent a burn hazard to personnel. This also extends the drain mast service life.

Training Information Point


Do not overlap the wraps of the tape heaters. If the tape is too long, increase the number of wraps.

SIA ALL

30-71-00

ICE AND RAIN PROTECTION - WATER LINES - GRAY WATER - FUNCTIONAL DESCRIPTION

M84881 S0004626532_V2

ICE AND RAIN PROTECTION - WATER LINES - GRAY WATER - FUNCTIONAL DESCRIPTION

SIA ALL

EFFECTIVITY

D633A101-SIA

30-71-00

Page 7 Oct 15/2021

ICE AND RAIN PROTECTION - WATER LINES - VACUUM WASTE - FUNCTIONAL DESCRIPTION

Purpose

The vacuum waste anti-icing system prevents freeze-plugging of the waste system drain and service lines.

General

The system uses resistance type electric heaters in these areas:

- · Vacuum waste tank drain (ball) valve
- · Vacuum waste tank rinse line.

Waste Tank Drain (Ball) Valve

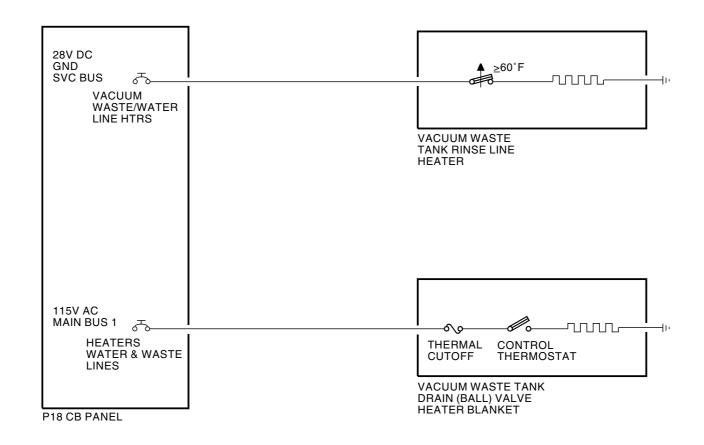
A blanket heater warms the waste tank drain (ball) valve.

The blanket heater uses 115v ac. Heat to the valve is automatic when power is on the airplane.

Waste Tank Rinse Line

A rinse line heater warms the waste tank rinse line.

The line heater uses 28v dc. Heat to the rinse line is automatic when power is on the airplane.


EFFECTIVITY

30-71-00

SIA ALL

ICE AND RAIN PROTECTION - WATER LINES - VACUUM WASTE - FUNCTIONAL DESCRIPTION

M84883 S0004626535 V2

ICE AND RAIN PROTECTION - WATER LINES - VACUUM WASTE - FUNCTIONAL DESCRIPTION

SIA ALL

D633A101-SIA

ECCN 9E991 BOEING PROPRIETARY - See title page for details

30-71-00

Page 9 Oct 15/2021