CHAPTER

36

PNEUMATIC

CHAPTER 36 PNEUMATIC

Subject/Page	Date	COC	Subject/Page	Date	COC	Subject/Page	Date	COC
36-EFFECTIVI	E PAGES		36-10 TASKS	(cont)		36-10 TASKS	(cont)	
1 thru 2	Oct 15/2023		226	Jun 15/2023		262	Jun 15/2023	
36-HOW TO U	SE THE FIM		227	Jun 15/2023		263	Jun 15/2023	
1	Oct 15/2021		228	Jun 15/2023		264	Jun 15/2023	
2	Oct 15/2021		229	Jun 15/2023		265	Jun 15/2023	
3	Oct 15/2021		230	Jun 15/2023		266	Jun 15/2023	
4	Oct 15/2021		231	Jun 15/2023		267	Jun 15/2023	
5	Oct 15/2021		232	Jun 15/2023		268	Jun 15/2023	
6	Oct 15/2021		233	Jun 15/2023		269	Jun 15/2023	
36-FAULT COI	DE INDEX		234	Jun 15/2023		270	Jun 15/2023	
101	Oct 15/2021		235	Jun 15/2023		271	Jun 15/2023	
102	BLANK		236	Jun 15/2023		272	Jun 15/2023	
36-10 TASKS			237	Jun 15/2023		273	Jun 15/2023	
201	Oct 15/2021		238	Jun 15/2023		274	Jun 15/2023	
202	Oct 15/2021		239	Jun 15/2023		275	Jun 15/2023	
203	Oct 15/2021		240	Jun 15/2023		276	Jun 15/2023	
204	Oct 15/2021		240	Jun 15/2023		277	Jun 15/2023	
205	Oct 15/2021		241			277		
206	Oct 15/2021			Jun 15/2023			Jun 15/2023	
207	Oct 15/2021		243	Jun 15/2023		279	Jun 15/2023	
208	Jun 15/2023		244	Jun 15/2023		280	Jun 15/2023	
209	Jun 15/2023		245	Jun 15/2023		281	Jun 15/2023	
210	Jun 15/2023		246	Jun 15/2023		282	Jun 15/2023	
211	Jun 15/2023		247	Jun 15/2023		283	Jun 15/2023	
212	Jun 15/2023		248	Jun 15/2023		284	Jun 15/2023	
213	Jun 15/2023		249	Jun 15/2023		285	Jun 15/2023	
214	Jun 15/2023		250	Jun 15/2023		286	Jun 15/2023	
215	Jun 15/2023		251	Jun 15/2023		287	Jun 15/2023	
216	Jun 15/2023		252	Jun 15/2023		288	Jun 15/2023	
217	Jun 15/2023		253	Jun 15/2023		289	Jun 15/2023	
218	Jun 15/2023		254	Jun 15/2023		290	Jun 15/2023	
219	Jun 15/2023		255	Jun 15/2023		291	Jun 15/2023	
220	Jun 15/2023		256	Jun 15/2023		292	Jun 15/2023	
221	Jun 15/2023		257	Jun 15/2023		293	Jun 15/2023	
222	Jun 15/2023		258	Jun 15/2023		294	Jun 15/2023	
223	Jun 15/2023		259	Jun 15/2023		295	Jun 15/2023	
224	Jun 15/2023		260	Jun 15/2023		296	Jun 15/2023	
225	Jun 15/2023		261	Jun 15/2023		297	Jun 15/2023	

 $\mbox{A = Added, R = Revised, D = Deleted, O = Overflow, C = Customer Originated Change} \label{eq:added}$

36-EFFECTIVE PAGES

CHAPTER 36 PNEUMATIC

Subject/Page	Date	coc	Subject/Page	Date	COC	Subject/Page	Date	COC
36-10 TASKS	(cont)		36-10 TASK SI	JPPORT (cont)				
298	Jun 15/2023		333	Oct 15/2021				
298.1	Jun 15/2023		334	Oct 15/2021				
298.2	Jun 15/2023		335	Oct 15/2021				
36-10 TASK S	UPPORT		336	BLANK				
301	Oct 15/2021							
302	Oct 15/2021							
303	Oct 15/2021							
304	Oct 15/2021							
305	Oct 15/2021							
306	Oct 15/2021							
307	Oct 15/2021							
308	Oct 15/2021							
309	Oct 15/2021							
310	Oct 15/2021							
311	Oct 15/2021							
312	Oct 15/2021							
313	Oct 15/2021							
314	Oct 15/2021							
315	Oct 15/2021							
316	Oct 15/2021							
317	Oct 15/2021							
318	Oct 15/2021							
319	Oct 15/2021							
320	Oct 15/2021							
321	Oct 15/2021							
322	Oct 15/2021							
323	Oct 15/2021							
324	Oct 15/2021							
325	Oct 15/2021							
326	Oct 15/2021							
327	Oct 15/2021							
328	Oct 15/2021							
329	Oct 15/2021							
330	Oct 15/2021							
331	Oct 15/2021							
332	Oct 15/2021							

 $\mbox{A = Added, R = Revised, D = Deleted, O = Overflow, C = Customer Originated Change} \label{eq:added}$

36-EFFECTIVE PAGES

YOU FIND A FAULT WITH AN AIRPLANE SYSTEM

These are the possible types of faults:

- 1. Observed Fault
- 2. Cabin Fault

USE BITE TO GET MORE INFORMATION

If you did a BITE test already, then you can go directly to the fault isolation procedure for the maintenance message.

For details, see Figure 2

GO TO THE FAULT ISOLATION TASK IN THE FIM

Use the fault code or description to find the task in the FIM. There is a numerical list of fault codes in each chapter. There are lists of fault descriptions at the front of the FIM.

For details, see Figure 3 ──►

FOLLOW THE STEPS OF THE FAULT ISOLATION TASK

The fault isolation task explains how to find the cause of the fault. When the task says "You corrected the fault" you know that the fault is gone.

For details, see Figure 4 ──►

G04902 S0000148576_V1

Basic Fault Isolation Process Figure 1

SIA ALL

36-HOW TO USE THE FIM

Page 1 Oct 15/2021

Some airplane systems have built-in test equipment (BITE). If the system finds a fault when you do a BITE test, it will give you a maintenance message.

A maintenance message can be any of these:

- a code
- a text message
- a light
- an indication.

To find the fault isolation task for a maintenance message, go to the Maintenance Message Index in the chapter for the applicable system.

If you do not know which chapter is the correct one, look at the list at the front of any Maintenance Message Index. For each system or component (LRU) that has BITE, this list gives the chapter number where you can find the Index that you need.

Find the maintenance message for the applicable LRU or system in the Index. Then find the task number on the same line as the maintenance message. Go to the task in the FIM and do the steps of the task (see Figure 4).

G04950 S0000148578_V1

Getting Fault Information from BITE Figure 2

SIA ALL

36-HOW TO USE THE FIM

Page 2 Oct 15/2021

IF YOU HAVE:

THEN DO THIS TO FIND THE TASK IN THE FIM:

FAULT CODE

- 1. The first two digits of the fault code are the FIM chapter that you need. Go to the Fault Code Index in that chapter and find the fault code. If the fault code starts with a letter, then go to the Cabin Fault Code Index at the front of the FIM.
- 2. Find the task number on the same line as the fault code. Go to the task in the FIM and do the steps in the task (see Figure 4).

OBSERVED FAULT
DESCRIPTION

- 1. Go to the Observed Fault List at the front of the FIM and find the best description for the fault.
- 2. Find the task number on the same line as the fault description. Go to the task in the FIM and do the steps of the task (see Figure 4).

CABIN FAULT DESCRIPTION

- 1. Go to the Cabin Fault List at the front of the FIM and find the best description for the fault.
- 2. Find the task number on the same line as the fault description. Go to the task in the FIM and do the steps of the task (see Figure 4).

MAINTENANCE MESSAGE (FROM BITE)

- Go to the Maintenance Message Index in the chapter for the LRU (the front of each Index gives you the chapter number for all LRUs). Find the maintenance message in the Index.
- 2. Find the task number on the same line as the maintenance message. Go to the task in the FIM and do the steps in the task (see Figure 4).

G04979 S0000148579_V2

Finding the Fault Isolation Task in the FIM Figure 3

SIA ALL

36-HOW TO USE THE FIM

Page 3 Oct 15/2021

ASSUMED CONDITIONS AT START OF TASK

- External electrical power is ON
- Hydraulic power and pneumatic power are OFF
- Engines are shut down
- No equipment in the system is deactivated

POSSIBLE CAUSES

- The list of possible causes has the most likely cause first and the least likely cause last.
- You can use the maintenance records of your airline to determine if the fault occurred before. Compare the list of possible causes to the past maintenance actions. This will help prevent repetition of the same maintenance actions.

INITIAL EVALUATION PARAGRAPH

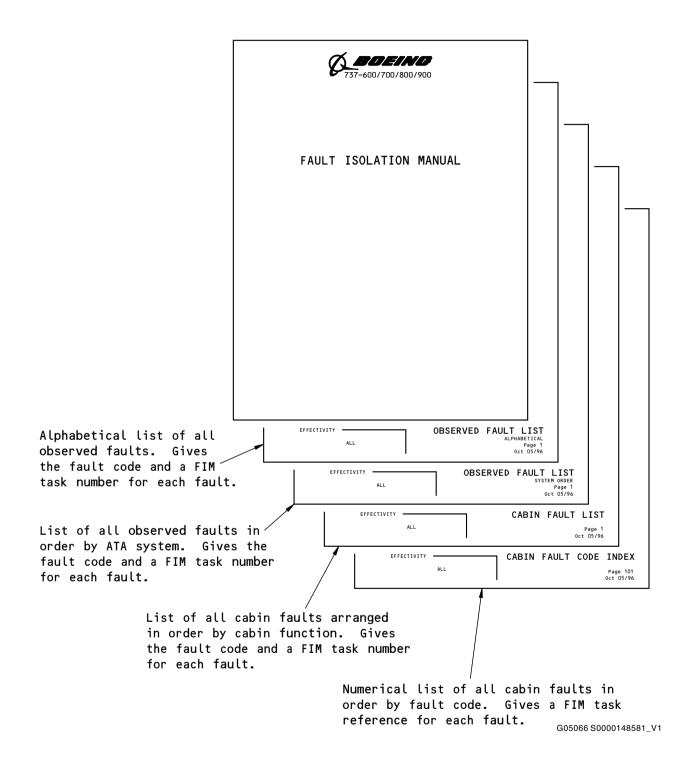
- The primary purpose of the Initial Evaluation paragraph at the start of the task is to help you find out if you can detect the fault right now:
 - If you cannot detect the fault right now, then the task cannot isolate the fault and the Initial Evaluation paragraph will say that there was an intermittent fault.
 - If you have an intermittent fault, you must use your judgement (and follow your airline's policy) to decide which maintenance action to take. Then monitor the airplane to see if the fault happens again on subsequent flights.
- The Initial Evaluation paragraph can also help you find out which Fault Isolation Procedure to use to isolate and correct the fault.

FAULT ISOLATION STEPS

- The FIM task steps are presented in a specified order. The "If... then" statements will guide you along a logical path. But if you do not plan to follow the FIM task exactly, make sure that you read it before you start to isolate the fault. Some FIM procedures start with important steps that have an effect on the other steps in the procedure.
- When you are at the endpoint of the path, the step says "...you corrected the fault." Complete the step and exit the procedure.

G05009 S0000148580_V3

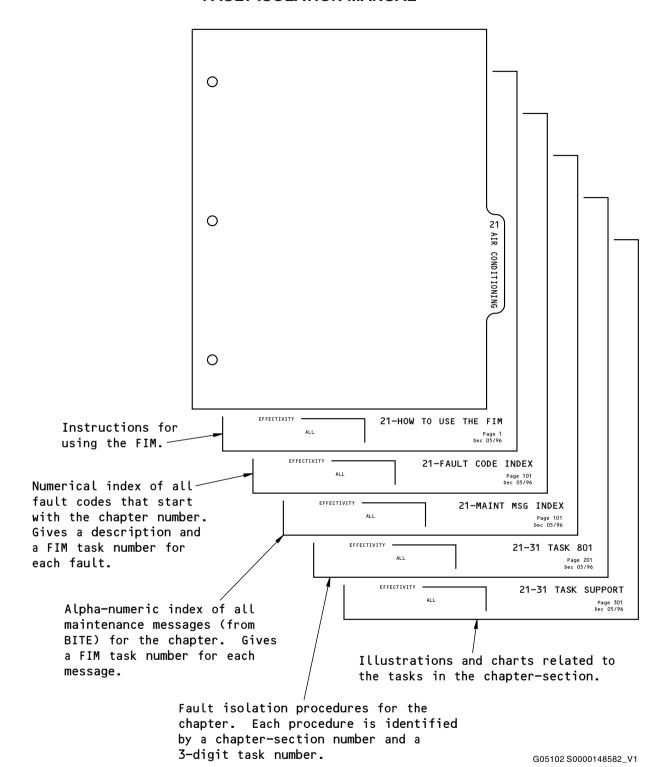
Doing the Fault Isolation Task Figure 4


SIA ALL

36-HOW TO USE THE FIM

Page 4 Oct 15/2021

FAULT ISOLATION MANUAL



Subjects at Front of FIM Figure 5

36-HOW TO USE THE FIM - EFFECTIVITY · **SIA ALL**

> Page 5 D633A103-SIA Oct 15/2021

Subjects in Each FIM Chapter Figure 6

Figure 6

- EFFECTIVITY

SIA ALL

36-HOW TO USE THE FIM

Page 6 Oct 15/2021

FAULT CODE	FAULT DESCRIPTION	GO TO FIM TASK
361 011 01	BLEED TRIP OFF Light comes ON: during takeoff - light No. 1.	36-10 TASK 809 or 36-10 TASK 801
361 011 02	BLEED TRIP OFF Light comes ON: during takeoff - light No. 2.	36-10 TASK 809 or 36-10 TASK 801
361 012 01	BLEED TRIP OFF Light comes ON: during climb - light No. 1.	36-10 TASK 809
361 012 02	BLEED TRIP OFF Light comes ON: during climb - light No. 2.	36-10 TASK 809
361 013 01	BLEED TRIP OFF Light comes ON: during cruise - light No. 1.	36-10 TASK 809
361 013 02	BLEED TRIP OFF Light comes ON: during cruise - light No. 2.	36-10 TASK 809
361 014 01	BLEED TRIP OFF Light comes ON: during idle descent - light No. 1.	36-10 TASK 809
361 014 02	BLEED TRIP OFF Light comes ON: during idle descent - light No. 2.	36-10 TASK 809
361 020 00	Bleed valve: does not close when the bleed switches are moved to off, the engine is the bleed source.	36-10 TASK 802
361 030 00	Duct Pressure Indication: high, the engine is the bleed source.	36-10 TASK 803
361 040 00	Duct Pressure Indication: low (below 18 psig) during takeoff, climb and cruise; the engine is the bleed source.	36-10 TASK 810 or 36-10 TASK 804
361 050 00	Duct Pressure Indication: Zero, the engine is the bleed source.	36-10 TASK 805
361 060 00	Isolation valve: does not operate correctly.	36-10 TASK 806
361 070 00	Duct Pressure Indication: L and R pointers not the same (split), with either pointer below 18 psig during takeoff, climb and cruise; the engine is the bleed source.	36-10 TASK 807
361 080 00	Duct Pressure Indication: L and R pointers not the same (split), the APU is the bleed source.	36-10 TASK 808

SIA ALL

36-FAULT CODE INDEX

Page 101 Oct 15/2021

801. BLEED TRIP OFF Light ON - Fault Isolation

A. Description

- (1) The BLEED TRIP OFF Light on the Overhead Panel can come ON if one or both of these conditions occur:
 - (a) Precooler Outlet Temperature gets to 485°F (252°C) to 500°F (260°C)
 - (b) AIRPLANES WITH BLEED AIR REGULATORS WITH PART NUMBER 10-62008-37: Pneumatic Pressure upstream of the PRSOV gets to the applicable pressure ranges: 170 psi (12 kg/cm²) to 190 psi (13 kg/cm²).
 - (c) AIRPLANES WITH BLEED AIR REGULATORS WITH PART NUMBER 10-62008-40: Pneumatic Pressure upstream of the PRSOV gets to the applicable pressure ranges: 210 psi (15 kg/cm²) to 230 psi (16 kg/cm²).
- (2) The most valuable tool in the fault isolation of the Pneumatic System is a thorough knowledge of the system. Information from the flight crew and awareness of the Aircraft Maintenance History can be invaluable in determining the fault isolation plan.
 - (a) If the BLEED TRIP OFF Light comes ON intermittently during various phases of flight and system operation, do a check of the system wiring before you replace components.

NOTE: The BLEED TRIP OFF Light can come ON when a BLEED Switch is selected immediately after a NO BLEED takeoff.

If the BLEED TRIP OFF Light can be reset, no maintenance action is necessary.

B. Possible Causes

- (1) Precooler Control Valve
 - (a) Failure Mode: Valve sticks closed or is closed when it should be open
- (2) Precooler Control Valve Sensor (390° F Sensor)
 - (a) Failure Mode: Failed to closed position
- (3) 450° F Thermostat
 - (a) Failure Mode: Failed to closed position
- (4) High Stage Regulator
 - (a) Failure Mode: High Control Pressure
- (5) High Stage Valve
 - (a) Failure Mode: Butterfly not completely closed, Seal Ring leakage
- (6) Bleed Air Regulator, M1180
 - (a) Failure Mode: Pressure Switch actuates at pressure below minimum specified
- (7) Sense Lines
 - (a) Failure Mode: Obstructed or kinked line from Precooler Control Valve to 390° F Sensor; Obstructed or kinked line from PRSOV to 450° F Sensor
- (8) Precooler Kiss Seal
 - (a) Failure Mode: Distorted or torn seals allow air to be blocked or bypass Precooler
- (9) Precooler
 - (a) Failure Mode: Clogged or obstructed passages, cracked plenums, internal leaks, damaged surfaces
- (10) Engine 1 (Engine 2) 490° F Overtemperature Switch, S20 (S21)

SIA ALL 36-10 TASK 801

- (a) Failure Mode: Switch is out of calibration (closes at temperature that is too low), short-to-ground in the wiring
- (11) Air Conditioning Accessory Unit, M324 or M1455
 - (a) Failure Mode: Internal short or faulty relay
- (12) Air Conditioning Module P5-10
 - (a) Failure Mode: Internal short
- (13) Wiring
 - (a) Failure Mode: Shorted wiring to Overpressure Switch in Bleed Air Regulator or 490° F Overtemperature Switch
 - (b) Engine Wiring Harness, MW0311

NOTE: MW0311 electrical harnesses P/N 325-029-901-0 and 325-029-902-0 are known to be the source of faults. These electrical harnesses can be reworked to serviceable units with the incorporation of CFM International Service Bulletin 72-0262.

1) Failure Mode: Possible wire shorting on backshell of connector DP1102

C. Circuit Breakers

(1) These are the primary circuit breakers related to the fault:

F/O Electrical System Panel, P6-4

Row	<u>Col</u>	<u>Number</u>	<u>Name</u>
Α	5	C00259	AIR CONDITIONING BLEED AIR VALVE ISLN
Α	6	C01470	AIR CONDITIONING BLEED AIR XDCR LEFT
Α	7	C00796	AIR CONDITIONING BLEED AIR VALVES L
В	5	C00077	AIR CONDITIONING BLEED AIR PRESS IND
В	6	C01469	AIR CONDITIONING BLEED AIR XDCR RIGHT
В	7	C00797	AIR CONDITIONING BLEED AIR VALVES R

D. Related Data

- (1) Component Location (36-10 TASK SUPPORT Figure 301)
- (2) Component Location (36-10 TASK SUPPORT Figure 302)
- (3) Pneumatic System Schematic (36-10 TASK SUPPORT Figure 304)
- (4) Troubleshooting Check (36-10 TASK SUPPORT Figure 306)
- (5) Pneumatic System Control Valve Position Indicators (36-10 TASK SUPPORT Figure 311)
- (6) SSM 36-11-11
- (7) WDM 36-11-11
- (8) Precooler Control Valve System Health Check, AMM TASK 36-12-00-700-801.
- (9) Engine Bleed Air System Health Check, AMM TASK 36-11-00-700-801.
- (10) Duct Pressure Versus N1 at Various Altitudes (36-10 TASK SUPPORT Figure 305)
- (11) Engine Bleed Air System Leak Check Using the APU, AMM TASK 36-11-00-700-802
- (12) SDS SUBJECT 36-11-00

36-10 TASK 801

SIA ALL

EFFECTIVITY

E. Initial Evaluation

SIA ALL

- (1) Push the TRIP RESET button on the P5-10 Panel to put the Bleed System back to the normal configuration.
 - (a) If the BLEED TRIP OFF Light was ON and successfully reset or the pilot's report stated that the BLEED TRIP OFF Light came ON and was reset one or more times, then do the Fault Isolation Procedure Preliminary Checks.
 - (b) If the BLEED TRIP OFF light was on and does not go off, then do the Fault Isolation Procedure BLEED TRIP OFF Light is ON and Cannot Be Reset.
 - NOTE: This condition indicates a problem with a Pressure Switch in the Bleed Air Regulator, the 490° F Overtemperature Switch or associated electrical wiring of the BLEED TRIP OFF Light.
 - (c) If the BLEED TRIP OFF Light came ON during a "no engine bleeds takeoff", then replace the High Stage Valve. These are the tasks:
 - · High Stage Valve Removal, AMM TASK 36-11-06-000-801
 - High Stage Valve Installation, AMM TASK 36-11-06-400-801
 - NOTE: A High Stage Valve with a leaky butterfly valve can cause the Pressure Switch in the Bleed Air Regulator to close and initiate the BLEED TRIP OFF Light to come ON during a "no engine bleeds takeoff".
 - 1) Do the Repair Confirmation at the end of this task.
 - 2) If the Repair Confirmation is not satisfactory, then continue.

NOTE: The tables below shows various causes and effects of a bleed trip.

Possible Causes and Effects of a Bleed Trip.

	1 03318	ne Causes and Enects of	a bicca irip.	
FIRST COMPONENT FAULT AND FAILURE MODE	FIRST FAULT SUB-SYSTEM EFFECT	SECOND COMPONENT FAULT AND FAILURE MODE	SECOND FAULT SUB-SYSTEM EFFECT	FLIGHT DECK EFFECT
High Stage Valve sticks OPEN		None	None	BLEED TRIP
Precooler Control Valve (PCCV) not OPEN				
Blockage in the Sense Line (Pc) between PCCV and 390°F sensor	Reduction or loss of			
390° sensor does not OPEN	the first level of temperature control	450° F thermostat does not OPEN		
Kiss seal torn or degraded		or Pc Sense Line is plugged between the pressure	Loss of the second level of temperature control	BLEED TRIP
Blockage in the fan air path		egulating shutoff valve and the 450° F thermostat		
Precooler cracked or plugged fan air path				
High Stage Valve slightly open or excessive bore leakage	Bleed air temperature from the engine is higher than normal			
450° F thermostat failed CLOSED				
Blockage in the Sense Line (Pc) between PRSOV and 450° F thermostat	Loss of the second level of temperature control	None	None	BLEED TRIP
Bleed Air Regulator 220 psig switch closes at lower pressure	Indication fault	None	None	BLEED TRIP
490° F thermostat closes at lower temperature	Indication fault	None	None	BLEED TRIP
Airplane or strut wiring short	Indication fault	None	None	BLEED TRIP

SIA ALL

36-10 TASK 801

Page 204 Oct 15/2021

Bleed Trip Fault Table Organized by Flight Phase.

		•			
CONDITION	GROUND/TAXI	TAKEOFF	CLIMB	CRUISE	IDLE DESCENT
Normal Operation	WTAI OFF - 18 to 22 psig WTAI ON - 12 to 14 psig HSV: Full OPEN PRSOV: Full OPEN PCCV: CLOSED Engine supply pressure and temperature are below regulation levels.	37 to 53 psig HSV: CLOSED PRSOV: Regulating PCCV: Regulating Engine supply pressure and temperature are being regulated.	37 to 53 psig HSV: CLOSED PRSOV: Regulating PCCV: Regulating Engine supply pressure and temperature are being regulated.	26 to 45 psig HSV: May be CLOSED or Regulating PRSOV: May be Regulating or OPEN PCCV: May be Regulating or CLOSED At lower cruise settings, engine pressure and temperature drop below regulated levels.	WTAI OFF - 18 to 25 psig HSV: Full OPEN PRSOV: Full OPEN PCCV: CLOSED Engine supply pressure and temperature are below regulation levels.
Ground/Taxi Fault	BLEED TRIP Supply pressure and temperature are not sufficient to cause a TRIP	No Fault	No Fault	No Fault	No Fault
Takeoff Fault	No Fault	BLEED TRIP Trips immediately on high power - over pressure: - HSV does not CLOSE Mid to late takeoff roll-over temperature: - First and second level temperature control not operating (PCCV/390°F Sensor, 450°F Sensor, or plugged Sense Lines) - HSV leakage	No Fault	No Fault	No Fault

SIA ALL

36-10 TASK 801

Page 205 Oct 15/2021

Bleed Trip Fault Table Organized by Flight Phase. (Continued)

CONDITION	GROUND/TAXI	TAKEOFF	CLIMB	CRUISE	IDLE DESCENT
Climb Fault	No Fault	No Fault	BLEED TRIP Over temperature: - First and second level temperature control not operating (PCCV/390°F Sensor, 450°F Sensor, or plugged Sense Lines) - HSV leakage	No Fault	No Fault
Cruise Fault	No Fault	No Fault	No Fault	BLEED TRIP Pressure and temperature should be below TRIP level. NOTE: Use of WTAI in cruise can cause the high stage valve to OPEN, causing an overtemperature.	No Fault
Descent Fault	No Fault	No Fault	No Fault	No Fault	BLEED TRIP Top of descent (part power) - over temperature: - HSV opens; second level of temperature control not operate (450°F Sensor or Sense Line plugged)

F. Fault Isolation Procedure - Preliminary Checks

NOTE: This check provides a means to quickly fault isolate the High Stage Valve, the Precooler Control Valve, the "Kiss" Seal, the Precooler Control Valve to 390° F Sensor Sense Line, and the PRSOV to 450° F Thermostat Sense Line. It is recommended that you do the entire Preliminary Checks - Fault Isolation Procedure before you do the Repair Confirmation.

- (1) Do these steps to prepare the airplane for the Preliminary Checks:
 - (a) Make sure that there is no pressure in the Pneumatic System:
 - 1) Do this task: Remove Pressure from the Pneumatic System, AMM TASK 36-00-00-860-806.
 - (b) Make sure that the applicable engine BLEED Switch is set to OFF.
 - (c) Make sure that the Fuel Shutoff Lever for the applicable engine is in the CUTOFF position and install DO-NOT-OPERATE tags.

SIA ALL

DO THESE SPECIFIED TASKS IN THE CORRECT SEQUENCE BEFORE YOU OPEN THE THRUST REVERSERS: RETRACT THE LEADING EDGE, DO THE DEACTIVATION PROCEDURES FOR THE LEADING EDGE AND THE THRUST REVERSER (FOR GROUND MAINTENANCE), AND OPEN THE FAN COWL PANELS. IF YOU DO NOT OBEY THE ABOVE SEQUENCE, INJURIES TO PERSONS AND DAMAGE TO EQUIPMENT CAN OCCUR.

- (d) Retract the Leading Edge Flaps and Slats, if not previously accomplished, and deactivate the Leading Edge Flaps and Slats. This is the task: Leading Edge Flaps and Slats Deactivation, AMM TASK 27-81-00-040-801.
- (e) Do this task: Thrust Reverser Deactivation For Ground Maintenance, AMM TASK 78-31-00-040-802-F00.
- (f) For the applicable Thrust Reverser, do this task: Open the Thrust Reverser (Selection), AMM TASK 78-31-00-010-801-F00.
- (2) Do these steps to do a check of the High Stage Valve:
 - (a) Examine the position indicator on the High Stage Valve:
 - 1) Make sure that the position indicator points to the fully closed position.
 - a) If the position indicator does not point to the fully closed position, replace the High Stage Valve. These are the tasks:
 - High Stage Valve Removal, AMM TASK 36-11-06-000-801
 - High Stage Valve Installation, AMM TASK 36-11-06-400-801
 - b) If the position indicator points to the fully closed position, then continue.
 - (b) Use a wrench on the High Stage Valve position indicator to open the valve, then remove the wrench and make sure that the valve closes fully.
 - If the position indicator on the High Stage Valve does not move to the OPEN and CLOSED positions smoothly or does not return to the fully closed position, replace the High Stage Valve. These are the tasks:
 - High Stage Valve Removal, AMM TASK 36-11-06-000-801
 - High Stage Valve Installation, AMM TASK 36-11-06-400-801
 - 2) If the position indicator on the High Stage Valve moves to the OPEN and CLOSED positions smoothly, then continue.
 - (c) Examine the High Stage Valve for excessive gaps between the valve body and the valve plate seal which can cause excessive leakage.
 - 1) Remove the High Stage Valve. This is the task: High Stage Valve Removal, AMM TASK 36-11-06-000-801.
 - 2) Hold the valve up to the light and look for gaps between the valve body and the valve plate seal.
 - NOTE: It is normal to see several slivers of light between the valve body and the valve plate seal in isolated locations.
 - 3) Excessive leakage can be expected if there is a gap around the entire circumference of the valve plate (about 0.020 inch gap).
 - a) If you find excessive gaps, install a new or overhauled High Stage Valve. This is the task: High Stage Valve Installation, AMM TASK 36-11-06-400-801.

SIA ALL 36-10 TASK 801

- b) If the gaps between the valve body and valve plate seal are determined to be normal, reinstall the valve. This the task: High Stage Valve - Installation, AMM TASK 36-11-06-400-801.
- (3) Do these steps to do a check of the Precooler Control Valve:
 - (a) Examine the position indicator on the Precooler Control Valve.
 - If the Precooler Control Valve is not fully open, then replace it. These are the tasks:
 - Precooler Control Valve Removal, AMM TASK 36-12-02-000-801
 - Precooler Control Valve Installation, AMM TASK 36-12-02-400-801
 - 2) If the Precooler Control Valve is in the fully open position, then continue.
- (4) Do a check of the Supply and Control Pressure Sense Lines:
 - (a) Do this task: Supply Pressure Upstream of the PRSOV, AMM TASK 36-00-00-860-805.
 - (b) Do a leak check with a soap solution on the entire length of the flexible and rigid lines and fittings of these pneumatic Sense Lines:

NOTE: Only leakage in the Sense Lines listed below will cause the low duct pressure condition.

- 1) Supply Pressure Sense Line to the Bleed Air Regulator
- 2) Control Pressure Sense Line from the Bleed Air Regulator to the PRSOV
- 3) Control Pressure Sense Line from the PRSOV to the 450° F Thermostat

NOTE: A small leak at the top of the 450° F Thermostat is acceptable. Leakage found at the Sense Lines or Sense Line Fittings must be repaired.

- (c) If you find leakage in the Sense Lines or fittings, do these steps:
 - Repair the Sense Line or, if necessary, replace the Sense Line.
 - a) Use Never-Seez Pure Nickel Special anti-seize compound (or equivalent) when you reconnect the Sense Lines.
 - 2) Do the Repair Confirmation at the end of this task.
- (d) If you do not find leakage in the Sense Lines or Fittings, then continue.
- (5) Look at the position indicator on the Precooler Control Valve:
 - (a) If the Precooler Control Valve is not within 30 degrees from the fully closed position, examine these areas for leakage:
 - NOTE: If the Precooler Control Valve is not within 30 degrees from the fully closed position, it can be due to a defective 390° F Precooler Control Valve Sensor or a leak in the Sense Line or the Sense Line fittings between the Precooler Control Valve and the 390° F Precooler Control Valve Sensor which should be isolated and corrected. However, if the Precooler Control Valve moves to the fully OPEN position in the next step, then the Precooler Control Valve should be modulating to open and this condition will not result in low duct pressure unless the Precooler Control Valve Sensor is failed in the CLOSED position. There is no way to do a check of the 390° F Precooler Control Valve Sensor on the aircraft. Keep this in mind if you do not find any defective components or if you still get a low duct pressure condition during the Repair Confirmation.
 - 1) Sense line to the Precooler Control Valve
 - Sense line between the Precooler Control Valve and the Precooler Control Valve Sensor
 - 3) Precooler Control Valve Sensor.

- (b) If leakage is detected, repair the applicable lines and connections as necessary:
 - Use Never-Seez Pure Nickel Special anti-seize compound (or equivalent) when you reconnect lines.
- (c) If leakage is not found, do the following:

REMOVE THE PRESSURE FROM THE PNEUMATIC DUCTS
BEFORE YOU REMOVE A PNEUMATIC SYSTEM COMPONENT. HOT
HIGH PRESSURE AIR CAN CAUSE INJURIES TO PERSONNEL OR
DAMAGE TO FOUIPMENT

- 1) Remove Precooler Control Valve in order to gain access and inspect the Precooler Inlet (AMM TASK 36-12-02-000-801).
 - a) If debris is found:
 - <1> Clear debris from inlet.
 - <2> Inspect Precooler Control Valve for any damage.
 - <a> If Precooler Control Valve is damaged, replace Precooler Control Valve.
 - If Precooler Control Valve is NOT damaged, reinstall Precooler Control Valve and conduct functional test.
 - If it passes, fault is corrected.
 - II. If it fails, replace Precooler Control Valve.
 - b) If debris is not found, replace Precooler Control Valve.
- 2) Make sure that there is no debris at the Precooler Inlet.
- 3) Do this task: Precooler Control Valve Installation, AMM TASK 36-12-02-400-801.
- (d) If the Precooler Control Valve is within 30 Degrees fully closed, then continue.
- (6) Do these steps to simulate the opening of the Precooler Control Valve Sensor:

EFFECTIVITY

SIA ALL

MAKE SURE THAT YOU WEAR THE PERSONAL PROTECTIVE EQUIPMENT WHEN YOU DO THIS TASK. PERSONAL PROTECTIVE EQUIPMENT WILL PREVENT INJURIES TO PERSONNEL.

- (a) Slowly remove the cap from the test fitting in the Control Pressure Sense Line for the Precooler Control Valve. (36-10 TASK SUPPORT Figure 306, View B)
 - NOTE: This simulates the opening of the Precooler Control Valve Sensor.
- (b) Make sure that the Precooler Control Valve opens fully or to within 30° of full open.
 - 1) If the Precooler Control Valve does not open fully or to within 30° of full open, then replace the Precooler Control Valve. Do these tasks:
 - a) Precooler Control Valve Removal, AMM TASK 36-12-02-000-801
 - b) Make sure that there is no debris at the Precooler Inlet.
 - Precooler Control Valve Installation, AMM TASK 36-12-02-400-801
 - 2) If the Precooler Control Valve opens fully or to within 30° of full open, then continue.
- (7) Do these steps to do a check of the Precooler "kiss" seal:

- (a) Examine the Precooler "kiss" seal for proper seating against the Precooler, distortion or obvious damage that might cause fan air to bypass the Precooler or obstruct the flow of fan air through the precooler.
- (b) If the "kiss" seal is distorted, obviously damaged, or not properly seated, replace the "kiss" seal as follows:

NOTE: The "kiss" seal replacement is part of the Precooler Control Valve replacement.

- 1) Do this task: Precooler Control Valve Removal, AMM TASK 36-12-02-000-801.
- 2) Examine the Fan Air side of the Bleed Air Precooler for foreign matter:
 - a) If you find foreign matter, remove it.
- 3) Do this task: Precooler Control Valve Installation, AMM TASK 36-12-02-400-801.
- (8) Do the Repair Confirmation at the end of this task.
 - (a) If the Repair Confirmation was not satisfactory, then continue.
- (9) Do the "Fault Isolation Procedure BLEED TRIP OFF Light Came ON But Could Be Reset" if one of these conditions exists:
 - (a) No system faults have been isolated
 - (b) Repair Confirmation was unsuccessfully performed.

G. - Fault Isolation Procedure - BLEED TRIP OFF Light Came ON But Could Be Reset

- (1) If the BLEED TRIP OFF Light came ON but could be reset and there were no system faults found in the Fault Isolation Procedure Preliminary Checks, then do the steps that follow:
 - (a) Make sure that there is no pressure in the Pneumatic System:
 - Do this task: Remove Pressure from the Pneumatic System, AMM TASK 36-00-00-860-806.
 - (b) Make sure that the applicable Engine Bleed Switch is in the OFF position.
- (2) Do these checks of the High Stage Regulator:
 - (a) Do the Engine Bleed Air System Health Check, AMM TASK 36-11-00-700-801.
 - Do only those steps that do a check of the Pressure Regulation of the High Stage Regulator.
 - If the High Stage Regulator Control Pressure is out of limits, replace the High Stage Regulator. These are the tasks:
 - High Stage Regulator Removal, AMM TASK 36-11-07-000-801
 - High Stage Regulator Installation, AMM TASK 36-11-07-400-801
 - a) Do the Repair Confirmation at the end of this task.
 - 3) If the High Stage Regulator Control Pressure is within specifications, then continue.
- (3) Do the Precooler Control Valve System Health Check, AMM TASK 36-12-00-700-801.
 - (a) If you found and repaired defects when you performed the Precooler Control Valve System Health Check, then do the Repair Confirmation at the end of this task.
 - (b) If the Precooler Control Valve Control Pressure is within specifications, then continue.
- (4) Do this check of the Sense Line between the Precooler Control Valve and the Precooler Control Valve Sensor, (36-10 TASK SUPPORT Figure 306):
 - (a) Disconnect the Sense Line at both ends.
 - (b) Blow dry shop air (80 psi maximum) or low pressure nitrogen through the Sense Line to make sure there are no obstructions in the line.

SIA ALL

- (c) Make sure that there is good airflow through the open line.
 - 1) If the airflow is satisfactory, then reconnect the Sense Line as follows:
 - Apply a light coat of Never-Seez Pure Nickel Special anti-seize compound (or equivalent) to the Sense Line connections.
 - b) Reconnect the Sense Line and continue.
 - 2) If there is poor airflow, do these steps:
 - a) Repair the obstruction or get a new Sense Line.
 - Apply a light coat of Never-Seez Pure Nickel Special anti-seize compound (or equivalent) to the Sense Line connections.
 - c) Reconnect the Sense Line.
 - d) Do the Repair Confirmation at the end of this task.
 - e) If the Repair Confirmation is not satisfactory, then continue.
- (5) Examine the fan air side of the Bleed Air Precooler for foreign matter as follows:
 - (a) Do this task: Precooler Control Valve Removal, AMM TASK 36-12-02-000-801.
 - (b) If you find foreign matter, remove it.
 - (c) Do this task: Precooler Control Valve Installation, AMM TASK 36-12-02-400-801.
- (6) If this Fault Isolation Procedure has not isolated defective components, the replace or do a check of these components:
 - NOTE: The Precooler Control Valve Sensor and the 450° F Thermostat cannot be tested on the wing. Replace the Precooler Control Valve Sensor and the 450° F Thermostat before you do the Repair Confirmation.
 - (a) Replace the Precooler Control Valve sensor and the 450° F Thermostat. These are the tasks:
 - Precooler Control Valve Sensor Removal, AMM TASK 36-12-03-000-801
 - Precooler Control Valve Sensor Installation, AMM TASK 36-12-03-400-801
 - Thermostat Removal, AMM TASK 36-11-05-000-801
 - Thermostat Installation, AMM TASK 36-11-05-400-801
 - 1) Do the Repair Confirmation at the end of this task.
 - 2) If the Repair Confirmation is not satisfactory, then continue.
 - (b) Replace the Wiring Harness MW0311 to the Bleed Air Regulator, M1180. These are the tasks:
 - 3 O'clock Strut Harness Removal, AMM TASK 73-21-06-000-802-F00
 - 3 O'clock Strut Harness Installation, AMM TASK 73-21-06-400-802-F00
 - NOTE: Electrical Harnesses MW0311 (P/N 325-029-901-0 and 325-029-902-0) are known to be the source of faults. The P/N 325-029-901-0 and 325-029-902-2 Electrical Harnesses can be reworked by CFM International Service Bulletin 72-0262 to serviceable Electrical Harnesses P/N 325-029-903-0 and 325-029-904-0, respectively. P/N 325-029-905-0 is the Production Harness and also the spared replacement.
 - 1) Do the Repair Confirmation at the end of this task.
 - 2) If the Repair Confirmation is not satisfactory, then continue.
 - (c) Replace or do a check of the 490° F Overtemperature Switch as follows:

SIA ALL

- 1) Replace the 490° F Overtemperature Switch. These are the tasks:
 - Overtemperature Switch Removal, AMM TASK 36-11-08-000-801
 - Overtemperature Switch Installation, AMM TASK 36-11-08-400-801
 - a) Do the Repair Confirmation at the end of this task.
 - b) If the Repair Confirmation is not satisfactory, then continue.
- 2) As an option to switch replacement, do this test of the switch to make sure it is within specification:
 - NOTE: If the switch is in the specified limits, there is no need to replace it at this time
 - a) Do this task: Bleed Air Regulator and 490F Overtemperature Switch Functional Test, AMM TASK 36-11-00-720-801.
 - NOTE: It is only necessary to do those steps applicable to the Functional Test of the 490° F Overtemperature Switch.
 - b) I Fnecessary, replace the 490° F Overtemperature Switch. These are the tasks:
 - Overtemperature Switch Removal, AMM TASK 36-11-08-000-801
 - Overtemperature Switch Installation, AMM TASK 36-11-08-400-801
 - c) Do the Repair Confirmation at the end of this task.
 - d) If the Repair Confirmation is not satisfactory, then continue.
- (d) Do a check of the Pressure Actuation Point of the Overpressure Switch in the Bleed Air Regulator as follows:
 - NOTE: Do this check ONLY if airplane Electrical Power is available. The airplane's Electrical Power is necessary to activate the Bleed Air Regulator's Overpressure Switch.
 - 1) Connect a Nitrogen Pressure source, STD-1455, Pressure regulator, STD-1454, to supply pressure tee for the Bleed Air Regulator and Precooler Control Valve; refer to Precooler Control Valve Functional Test, AMM TASK 36-12-00-710-802.
 - Disconnect the control line to the Pressure Regulator and Shutoff Valve and tee in a gage; refer to Precooler Control Valve Functional Test, AMM TASK 36-12-00-710-802.
 - Slowly increase Supply Pressure (Ps) to 250 psig and then reduce Ps to 80 psig.
 - 4) On the flight deck, push the TRIP RESET switch to reset the BLEED TRIP OFF light that illuminated when Ps was increased to 250 psig.
 - 5) Slowly increase Ps to 210 230 (170 190 psig for Bleed Air Regulators with part number 10-62008-37).
 - Make sure that the BLEED TRIP OFF light is illuminated when Ps is 210 230 psig (170 190 psig for Bleed Air Regulators with part number 10-62008-37) and the control pressure (Pc) drops to 0 6 psig.
 - b) Record the Ps when the BLEED TRIP OFF light illuminates and the Pc drops to 0 6 psig. This is the pressure actuation point of the Overpressure Switch.
 - 6) If the Pressure Actuation Point of the Overpressure Switch is Low or High, replace the Bleed Air Regulator. These are the tasks:
 - Bleed Air Regulator Removal, AMM TASK 36-11-03-000-801
 - Bleed Air Regulator Installation, AMM TASK 36-11-03-400-801

36-10 TASK 801

SIA ALL

EFFECTIVITY

- a) If the Pressure Actuation Point of the Overpressure switch is Low, do the Repair Confirmation at the end of the task.
- b) If the Pressure Actuation Point of the Overpressure switch is High or in the specified range, then continue.
- (e) Replace the Bleed Air Precooler. These are the tasks:
 - Bleed Air Precooler Removal, AMM TASK 36-12-01-000-801
 - Bleed Air Precooler Installation, AMM TASK 36-12-01-400-802
 - 1) Do the Repair Confirmation at the end of this task.

H. - Fault Isolation Procedure - BLEED TRIP OFF Light is ON and Cannot Be Reset

(1) If the BLEED TRIP OFF Light is ON at this time or if the fault is intermittent and suspected to be an electrical fault, then do these steps to prepare pneumatic components on the engine for fault isolation:

NOTE: Electrical Harnesses MW0311 (P/N 325-029-901-0 and 325-029-902-0) are known to be the source of faults. These harnesses can short to the connector backshell under hot operating conditions with a result of a BLEED TRIP OFF Light or a tripped circuit breaker.

- (a) Make sure that there is no pressure in the Pneumatic System.
 - 1) Do this task: Remove Pressure from the Pneumatic System, AMM TASK 36-00-00-860-806.
- (b) Make sure that the applicable Engine Bleed Switch is in the OFF position.
- (c) Make sure that the Fuel Shutoff Lever for the applicable engine is in the CUTOFF position and install DO-NOT-OPERATE tags.

DO THESE SPECIFIED TASKS IN THE CORRECT SEQUENCE BEFORE YOU OPEN THE THRUST REVERSERS: RETRACT THE LEADING EDGE, DO THE DEACTIVATION PROCEDURES FOR THE LEADING EDGE AND THE THRUST REVERSER (FOR GROUND MAINTENANCE), AND OPEN THE FAN COWL PANELS. IF YOU DO NOT OBEY THE ABOVE SEQUENCE, INJURIES TO PERSONS AND DAMAGE TO EQUIPMENT CAN OCCUR.

- (d) Retract the Leading Edge Flaps and Slats, if not previously accomplished, and deactivate the Leading Edge Flaps and Slats. This is the task: Leading Edge Flaps and Slats Deactivation, AMM TASK 27-81-00-040-801.
- (e) Do this task: Thrust Reverser Deactivation For Ground Maintenance, AMM TASK 78-31-00-040-802-F00.
- (f) For the applicable Thrust Reverser, do this task: Open the Thrust Reverser (Selection), AMM TASK 78-31-00-010-801-F00.
- 2) Do these steps to do a check of the Pressure Switch wiring in the Bleed Air Regulator:
 - (a) Disconnect the electrical connector DP1102 from the Bleed Air Regulator, M1180.
 - (b) Push the TRIP RESET button on the P5-10 Panel.
 - (c) If the BLEED TRIP OFF light goes OFF, replace the Bleed Air Regulator. These are the tasks:
 - Bleed Air Regulator Removal, AMM TASK 36-11-03-000-801
 - Bleed Air Regulator Installation, AMM TASK 36-11-03-400-801

SIA ALL 36-10 TASK 801

- 1) Do the Repair Confirmation at the end of this task.
- (d) If the BLEED TRIP OFF light does not go OFF, re-connect electrical connector DP1102 to the Bleed Air Regulator, M1180, and continue.
- (3) Do these steps to do a check of the for the 490° F Overtemperature Switch wiring:
 - (a) Disconnect the electrical connector D526 (Engine 1) or D528 (Engine 2) from the applicable 490° F Overtemperature Switch, S20 or S21.
 - (b) Push the TRIP RESET button on the P5-10 Panel.
 - (c) If the BLEED TRIP OFF Light goes OFF, then replace the 490° F Overtemperature Switch, S20 or S21, as applicable. These are the tasks:
 - Overtemperature Switch Removal, AMM TASK 36-11-08-000-801
 - Overtemperature Switch Installation, AMM TASK 36-11-08-400-801
 - 1) Do the Repair Confirmation at the end of this task.
 - (d) If the BLEED TRIP OFF Light does not go OFF, re-connect electrical connector, D526 (Engine 1) or D528 (Engine 2) to the applicable Overtemperature Switch and continue.
- (4) Do a check of the wiring for a short to ground as follows (WDM 36-11-11):
 - NOTE: An internal short to ground within the ACAU, the P5-10 Air Conditioning Module, the MW0311 Engine Bleed Air Regulator Harness, or other aircraft wiring can cause the BLEED TRIP OFF Light to stay ON.
 - (a) Remove the Air Conditioning Accessory Unit (ACAU). This is the task: Air Conditioning Accessory Unit (ACAU) Removal, AMM TASK 21-51-02-000-801.
 - 1) If the BLEED TRIP OFF Light goes OFF, do a check of the wiring between:
 - · ACAU and the Bleed Air Regulator Pressure Switch
 - · ACAU and the Bleed Air Overtemperature Switch
 - a) Repair the problems that you find.
 - 2) If the light does not go OFF, then do a check of the wiring between the P5-10 Air Conditioning Module and the ACAU.
 - Repair the problems that you find.
 - If you do not find wiring problems, then install a serviceable ACAU. This is the task: Air Conditioning Accessory Unit (ACAU) Installation, AMM TASK 21-51-02-400-801.
 - NOTE: You can do the Adjustment/Test of the ACAU after the Electrical Fault Isolation has been completed.
 - c) If you do not find problems, then install a serviceable P5-10 Air Conditioning Module. This is the task: Air Conditioning Module Installation, AMM TASK 21-51-65-400-801.
 - d) Do the Repair Confirmation at the end of this task.
 - e) If you have not already done so, do the Air Conditioning Accessory Unit Operational Test, AMM TASK 21-51-02-710-802-002.

36-10 TASK 801

EFFECTIVITY
SIA ALL

I. BLEED TRIP Troubleshooting Table

(1) Refer to the table below to do quick troubleshooting for bleed trips.

BLEED TRIP Troubleshooting Table

BLEED TRIP 1	roubleshooting Table
OPERATING PHASE	RECOMMENDED MAINTENANCE ACTION
GROUND IDLE/TAXI: BLEED TRIP O	CCURS ONLY DURING GROUND IDLE/TAXI
5th and 9th stage supply pressure and temperature are not sufficient to cause a BLEED TRIP.	- Wiring short - Over Pressure Switch - Over Temperature Switch Note: These failure modes can occur at all flight phases.
TAKEOFF: BLEED TRIP OCC	URS ONLY DURING TAKEOFF ROLL
Immediately on applicatio	n of takeoff power: over pressure
High Stage Valve does not close.	Do a check to see if the High Stage Valve closes. (FIM 36-10 TASK 801, Step F(2).
	rature First Level (PCCV and 390° F sensor)) of Temperature Control does not operate
Precooler Control Valve (PCCV) not open.	Do a check to see if PCCV opens when Pc is less than 3 psig. (FIM 36-10 TASK 801, Steps F(3), F(11), and F(12).
390° F Sensor does not open.	If PCCV opens, replace the 390° F Sensor
	Precooler Control Valve Sensor Removal, AMM TASK 36-12-03-000-801
	Precooler Control Valve Sensor Installation, AMM TASK 36-12-03-400-801
450° F Sensor does not open.	Replace the 450° F Sensor
	Thermostat Removal, AMM TASK 36-11-05-000-801
	Thermostat Installation, AMM TASK 36-11-05-400-801
High Stage Valve ha	s excessive internal leakage
High Stage Valve leakage causes elevated Bleed Temperature from engine.	Examine the High Stage Valve internal clearance (FIM 36-10 TASK 804, Step F(2)(c)).
CLIMB: BLEED TRIP O	CCURS ONLY DURING CLIMB
	CV and 390° F Sensor) and Second Level erature Control does not operate
Precooler Control Valve (PCCV) not open.	Do a check to see if PCCV opens when Pc is less than 3 psi (FIM 36-10 TASK 801, Steps F(3), F(11), and F(12).
390° F Sensor does not open.	If PCCV opens, replace the 390° F Sensor
	Precooler Control Valve Sensor Removal, AMM TASK 36-12-03-000-801
	Precooler Control Valve Sensor Installation, AMM TASK 36-12-03-400-801
450° F Sensor does not open.	Replace the 450° F Sensor
	Thermostat Removal, AMM TASK 36-11-05-000-801
	Thermostat Installation, AMM TASK 36-11-05-400-801
High Stage Valve ha	s excessive internal leakage

EFFECTIVITY -

SIA ALL

BLEED TRIP Troubleshooting Table (Continued)

OPERATING PHASE	RECOMMENDED MAINTENANCE ACTION
High Stage Valve leakage causes elevated Bleed Temperature from engine.	Examine the High Stage Valve internal clearance (FIM 36-10 TASK 804, Step F(2)(c)).
Restricted fan air flow to the Precooler.	-Visually check for kiss seal degradation - Debris in the fan air path.
CRUISE: BLEED TRIP OC	CCURS ONLY DURING CRUISE
to cause a trip and 5th Stage Bl	feet the engine cannot produce pressure eed Temperature is below trip 490° F) Valve opens early
Use of wing anti-ice in cruise can cause the High Stage Valve to open early.	Operationally induced. Not a component fault.
High Stage Valve opens early.	Replace the High Stage valve.
	High Stage Valve Removal, AMM TASK 36-11-06-000-801
	High Stage Valve - Installation, AMM TASK 36-11-06-400-801
	There is no procedure to replicate valve operation (downstream pressure closing force is internal to the valve).
DECENT: BLEED TRIP OC	CURS ONLY DURING DESCENT
Overt	emperature
450° F Sensor does not open.	Replace the 450° F Sensor
	Thermostat Removal, AMM TASK 36-11-05-000-801
	Thermostat Installation, AMM TASK 36-11-05-400-801)

J. Repair Confirmation

- (1) Remove all pressure gages, test equipment and associated hardware.
- (2) Re-connect all Sense Lines that were disconnected.
 - (a) Use Never-Seez Pure Nickel Special anti-seize compound (or equivalent) on the Sense Line fittings.
- (3) Re-install all components that were removed.
- (4) Make sure that all electrical connectors removed for wiring checks have been re-connected.
- (5) Do the Operational Tests for all components that were removed and re-installed.
- (6) Install the access panels that were removed.

OBEY THE INSTRUCTIONS IN THE PROCEDURE TO CLOSE THE THRUST REVERSERS. IF YOU DO NOT OBEY THE INSTRUCTIONS, INJURIES TO PERSONS AND DAMAGE TO EQUIPMENT CAN OCCUR.

- (7) For the Left Thrust Reverser, do this task: Close the Thrust Reverser (Selection), AMM TASK 78-31-00-010-804-F00.
- (8) Close the Fan Cowl Panels. This is the task: Close the Fan Cowl Panels, AMM TASK 71-11-02-410-801-F00.

- EFFECTIVITY

SIA ALL

36-10 TASK 801

Page 216 Jun 15/2023

D633A103-SIA

- (9) Reactivate the Leading Edge Flaps and Slats. This is the task: Leading Edge Flaps and Slats -Activation, AMM TASK 27-81-00-440-801.
- (10) Reactivate the Thrust Reverser. This is the task: Thrust Reverser Activation After Ground Maintenance, AMM TASK 78-31-00-440-803-F00.
- (11) On the P5-10 Panel:, push the TRIP RESET button.
 - (a) Make sure that there are no BLEED TRIP OFF Lights ON.

----- END OF TASK -----

802. Bleed Valve Will Not Close When the Bleed Switches Are Moved to Off, the Engine Is the Bleed Source - Fault Isolation

A. Description

- (1) (SDS SUBJECT 36-11-00)
- (2) This condition may be shown when the pressure indication on the Dual Duct Pressure Indicator does not decrease to less than 10 psi (68.9 kPa) with the engines as the bleed source and with the engine bleed switches in the OFF position.
- (3) The MW0311 harness with part numbers 325-029-901-0 and 325-029-902-0 can have internal shorting which can cause the circuit breaker that powers the solenoid on the Bleed Air Regulator, M1180 to trip and, subsequently, not allow the PRSOV to close. This internal shorting may not be a constant condition. However, if the circuit breaker is found tripped and has been found tripped in the past, it is possible that there is an intermittent short in the harness. If this is the case, the MW0311 harness should be considered a likely source of the fault and it should be thoroughly examined to determine if it should be replaced.

NOTE: CFM International Service Bulletin 72-0262 provides instructions to rework the harness part numbers listed above to a serviceable condition.

B. Possible Causes

- (1) Electrical Harness, MW0311
 - (a) Failure Mode: Open or shorted wiring

NOTE: CFM56-7b Service Bulletin 72-0262 reworks this harness.

- (2) Circuit Breakers
 - (a) Failure Mode: Failed open
- (3) Air Conditioning Module, P5-10
 - (a) Failure Mode: Internal open or shorted circuit
- (4) Engine/APU Fire Control Panel, P8-1
 - (a) Failure Mode: Internal open or shorted circuit
- (5) Air Conditioning Accessory Unit, M324
 - (a) Failure Mode: Internal short or open
- (6) Air Conditioning Accessory Unit, M1455

NOTE: Only 737-800 and 737-900 airplanes have the M1455 ACAU.

- (a) Failure Mode: Internal short or open
- (7) Aircraft Wiring

SIA ALL

- (a) Failure Mode: Failed open or short circuit
- (8) Pressure Regulator and Shutoff Valve (PRSOV)

36-10 TASKS 801-802

(a) Failure Mode: Failed open

(9) Bleed Air Regulator, M1180

(a) Failure Mode: Open or shorted coil

(10) Indication System

C. Circuit Breakers

(1) These are the primary circuit breakers related to the fault:

F/O Electrical System Panel, P6-4

Row	<u>Col</u>	<u>Number</u>	<u>Name</u>
Α	5	C00259	AIR CONDITIONING BLEED AIR VALVE ISLN
Α	6	C01470	AIR CONDITIONING BLEED AIR XDCR LEFT
Α	7	C00796	AIR CONDITIONING BLEED AIR VALVES L
В	5	C00077	AIR CONDITIONING BLEED AIR PRESS IND
В	6	C01469	AIR CONDITIONING BLEED AIR XDCR RIGHT
В	7	C00797	AIR CONDITIONING BLEED AIR VALVES R

D. Related Data

- (1) Component Location (36-10 TASK SUPPORT Figure 301)
- (2) Troubleshooting Check (36-10 TASK SUPPORT Figure 307)
- (3) Pneumatic System Control Valve Position Indicators (36-10 TASK SUPPORT Figure 311)
- (4) SSM 36-11-11
- (5) WDM 36-21-11

E. Initial Evaluation

- (1) Make sure that these circuit breakers have not tripped:
 - (a) These are the circuit breakers:

F/O Electrical System Panel, P6-4

Row	<u>Col</u>	<u>Number</u>	<u>Name</u>
Α	7	C00796	AIR CONDITIONING BLEED AIR VALVES L
В	7	C00797	AIR CONDITIONING BLEED AIR VALVES R

- (b) If one or both of the circuit breakers have tripped, do these steps:
 - 1) Remove the electrical power. This is the task: Remove Electrical Power, AMM TASK 24-22-00-860-812.

DO NOT HOLD THE CIRCUIT BREAKER IN THE RESET POSITION. IF YOU HOLD THE CIRCUIT BREAKER IN THE RESET POSITION WHEN A WIRING FAULT IS PRESENT, THE CIRCUIT BREAKER WILL NOT BE ABLE TO TRIP AGAIN. FAILURE TO RESET AND RELEASE THE CIRCUIT BREAKER QUICKLY CAN RESULT IN A FIRE, EXTENSIVE DAMAGE TO WIRING, AND INJURY TO PERSONS.

- 2) Quickly reset the circuit breaker and release it.
- 3) Supply the electrical power. This is the task: Supply Electrical Power, AMM TASK 24-22-00-860-811.
- (c) If the circuit breaker trips again, proceed to the Fault Isolation Procedure.

--- EFFECTIVITY

SIA ALL

- (d) If the circuit breaker was reset successfully, then continue with the Initial Evaluation.
 - 1) If the circuit breaker trips again in the steps that follow, make a record of the position that the engine bleed switch was in as it may be useful later on.
- (e) If the circuit breaker(s) has not tripped, then continue.
- (2) Remove the pressure from the pneumatic system. This is the task: Remove Pressure from the Pneumatic System, AMM TASK 36-00-00-860-806.
- (3) Make sure that the Manifold Pressure Pointer on the Dual Duct Pressure Indicator for the applicable system indicates less than 2 psi (13.8 kPa) with no pneumatic source available.
 - (a) If the indicated pressure on the Dual Duct Pressure Indicator is 2 psi (13.8 kPa) or greater, then do the Duct pressure, L and R pointers not the same (split) the APU is the bleed source Fault Isolation Procedure (36-10 TASK 808)
 - (b) If the indicated pressure on the Dual Duct Pressure Indicator is less than 2 psi (13.8 kPa), continue.
 - (c) Supply pressure to the pneumatic system with the APU. This is the task: Supply Pressure to the Pneumatic System with the APU, AMM TASK 36-00-00-860-803.
 - (d) Make sure that the pneumatic pressure increases to a minimum of 12 psi (82.7 kPa) with no user systems in operation and the L and R pointers on the Dual Duct Pressure Indicator are within 3 psi (20.7 kPa) of each other when the ISOLATION VALVE switch is set to OPEN.
 - If the pneumatic pressure does not increase to a minimum of 12 psi (82.7 kPa) with the APU BLEED switch on or if there is a difference (split) in the L and R pointers on the Dual Duct Pressure Indicator that is greater than 3 psi (20.7 kPa), then do the Duct pressure, L and R pointers not the same (split) the APU is the bleed source -Fault Isolation Procedure (36-10 TASK 808).
 - 2) If the pneumatic pressure indication is a minimum of 12 psi (82.7 kPa) with no user systems in operation and the L and R pointers on the Dual Duct Pressure Indicator are within 3 psi (20.7 kPa) of each other, then continue.
- (4) Supply pneumatic pressure with the engine on the side with the problem. This is the task: Supply Pressure to the Pneumatic System with One or Both Engines, AMM TASK 36-00-00-860-804
- (5) Set these Pneumatic Control Switches to the position shown:
 - (a) APU BLEED to OFF
 - (b) ISOLATION VALVE to CLOSE
- (6) If applicable, remove any external pneumatic source.
- (7) Do these steps to do a check of the operation of the engine BLEED switch/PRSOV:
 - <u>NOTE</u>: The engine BLEED switch will be cycled in these steps to make sure that there are no intermittent malfunctions in the system operation.
 - (a) Set the applicable engine BLEED 1 or 2 switch to the OFF position.
 - (b) Make sure that the Pointer for the applicable system on the Dual Duct Pressure Indicator decreases to less than 10 psi (68.9 kPa).
 - (c) Set the applicable engine BLEED switch to the ON position.

36-10 TASK 802

EFFECTIVITY

(d) Make sure that the Manifold Pressure Pointer for the applicable system increases to 10 psi (68.9 kPa) –25 psi (172.4 kPa) with the engine at steady idle without user systems in operation.

NOTE: The duct pressure Pointers on the Dual Duct Pressure Indicator may fluctuate without user systems in operation.

- (e) Set the applicable engine BLEED switch to the OFF position
- (f) Make sure that the applicable Pointer on the Dual Duct Pressure Indicator decreases to less than 10 psi (68.9 kPa).
- (8) If the Pressure Pointer decreases to less than 10 psi (68.9 kPa) when the applicable engine BLEED switch is moved to the OFF position, then there was an intermittent fault.
 - (a) Use your judgement, airline policy, and the aircraft's pneumatic system history to decide if you will take action to correct the fault.
 - (b) Stop the engine. This is the task: Stop the Engine Procedure (Usual Engine Stop), AMM TASK 71-00-00-700-819-F00.
 - (c) Remove Pressure from the Pneumatic System. This is the task: Remove Pressure from the Pneumatic System, AMM TASK 36-00-00-860-806.
- (9) If the manifold pressure either does not decrease to less than 10 psi (68.9 kPa) when the applicable BLEED switch is moved to the OFF position or intermittently decreases to less than 10 psi when the applicable BLEED switch is moved to the OFF position, perform the Fault Isolation Procedure.

F. Fault Isolation Procedure

- (1) Do these steps to prepare for Fault Isolation Procedure:
 - (a) Make sure that there is no pressure in the pneumatic system. This is the task: Remove Pressure from the Pneumatic System, AMM TASK 36-00-00-860-806.
 - (b) Make sure the fuel shutoff lever for the applicable engine is in the cutoff position and install DO-NOT-OPERATE tags.

DO THESE SPECIFIED TASKS IN THE CORRECT SEQUENCE BEFORE YOU OPEN THE THRUST REVERSER: RETRACT THE LEADING EDGE FLAPS AND SLATS, DEACTIVATE THE LEADING EDGE FLAPS AND SLATS, DEACTIVATE THE THRUST REVERSER (FOR GROUND MAINTENANCE) AND OPEN THE FAN COWL PANEL. FAILURE TO OBEY THE ABOVE SEQUENCE MAY RESULT IN INJURIES TO PERSONS AND DAMAGE TO EQUIPMENT.

- (c) Retract the Leading Edge Flaps and Slats if not previously accomplished. This is the task: Leading Edge Flaps and Slats Retraction, AMM TASK 27-81-00-860-804.
- (d) Deactivate the Leading Edge Flaps and Slats. This is the task: Leading Edge Flaps and Slats Deactivation. AMM TASK 27-81-00-040-801.
- (e) Deactivate the applicable thrust reverser. This is the task: Thrust Reverser Deactivation For Ground Maintenance, AMM TASK 78-31-00-040-802-F00.
- (f) Open the applicable thrust reverser. This is the task: Open the Thrust Reverser (Selection), AMM TASK 78-31-00-010-801-F00.
- (2) Do these steps to do a check of the PRSOV:

NOTE: This step makes sure that the valve has not stuck in an open position.

(a) Look at these circuit breakers to see if they are tripped:

36-10 TASK 802

Page 220 Jun 15/2023

1) These are the circuit breakers:

F/O Electrical System Panel, P6-4

Row	<u>Col</u>	<u>Number</u>	<u>Name</u>
Α	7	C00796	AIR CONDITIONING BLEED AIR VALVES L
В	7	C00797	AIR CONDITIONING BLEED AIR VALVES R

- (b) If the applicable circuit breaker has not tripped, then do these steps:
 - 1) Make sure that the applicable engine BLEED switch is set to OFF.
 - 2) Look at the position indicator on the PRSOV.
 - 3) If the PRSOV is not in the fully closed position, then replace the PRSOV. These are the tasks:
 - PRSOV Removal, AMM TASK 36-11-04-000-801
 - PRSOV Installation, AMM TASK 36-11-04-400-801
 - a) Do the Repair Confirmation at the end of this task.
 - 4) If the PRSOV is in the fully closed position, then continue.
- (c) If the applicable circuit breaker has tripped, then continue to the check of the Engine Harness, MW0311.

NOTE: The MW0311 Engine Harness may have a short that trips the circuit breaker.

- (3) Do this check for 28V DC to the Bleed Air Regulator, M1180:
 - (a) Open these circuit breakers:

F/O Electrical System Panel, P6-4

Row	<u>Col</u>	<u>Number</u>	<u>Name</u>
Α	7	C00796	AIR CONDITIONING BLEED AIR VALVES L
В	7	C00797	AIR CONDITIONING BLEED AIR VALVES R

- (b) Disconnect connector DP1102 from the applicable Bleed Air Regulator, M1180.
- (c) Close these circuit breakers:

F/O Electrical System Panel, P6-4

Row	<u>Col</u>	<u>Number</u>	<u>Name</u>
Α	7	C00796	AIR CONDITIONING BLEED AIR VALVES L
В	7	C00797	AIR CONDITIONING BLEED AIR VALVES R

- (d) Make sure that the applicable engine BLEED switch is set to OFF.
- (e) Measure the voltage between pins 7 and 6 of connector DP1102.
 - If there is 22-30V DC between pins 7 and 6 of connector DP1102, measure the resistance between pins 7 and 6 of the connector on the Bleed Air Regulator, M1180.
 - a) If the resistance between pins 7 and 6 of the Bleed Air Regulator electrical connector is not between 20-40 ohms, replace the Bleed Air Regulator, M1180. To replace the regulator, these are the tasks:
 - Bleed Air Regulator Removal, AMM TASK 36-11-03-000-801
 - Bleed Air Regulator Installation, AMM TASK 36-11-03-400-801
 - b) Do the Repair Confirmation at the end of this task.

36-10 TASK 802

SIA ALL

EFFECTIVITY

- c) If the resistance between pins 7 and 6 of the Bleed Air Regulator electrical connector is between 20-40 Ohms, then continue.
- 2) If there is not 22-30V DC between pins 7 and 6 of connector DP1102, do a check of the wiring between connector DP1102, pin 6 and the ground (WDM 36-11-11).

BLEED AIR REGULATOR DP1102

pin 6 GROUND

- b) Repair any problems that you find.
- c) Do the Repair Confirmation at the end of this task.
- d) If the ground does not have any problems, then continue.
- (4) Do this check to make sure there is 28V DC at the Engine Harness, MW0311:
 - (a) Open these circuit breakers:

F/O Electrical System Panel, P6-4

Row	<u>Col</u>	<u>Number</u>	<u>Name</u>
Α	7	C00796	AIR CONDITIONING BLEED AIR VALVES L
В	7	C00797	AIR CONDITIONING BLEED AIR VALVES R

- (b) Disconnect connector DP1104 from connector D30204 (D30404) at the engine firewall disconnect, as applicable.
- (c) Close these circuit breakers:

F/O Electrical System Panel, P6-4

Row	<u>Col</u>	<u>Number</u>	Name
Α	7	C00796	AIR CONDITIONING BLEED AIR VALVES L
В	7	C00797	AIR CONDITIONING BI FED AIR VAI VES R

- (d) Make sure that there is 22-30V DC between pins 12 and 11 of connector D30204 (D30404).
 - If there is not 22-30V DC between pins 12 and 11 of connector D30204 (D30404), then proceed to the Open Electrical Circuit - Fault Isolation Procedure.
 - 2) If there is 22-30V DC between pins 12 and 11 of connector D30204 (D30404), then continue.
- (5) Do these steps to do a check of the Engine Harness, MW0311:

NOTE: MW0311 Engine Harnesses with part numbers 325-029-901-0 or 325-029-902-0 are susceptible to internal shorting which can cause the bleed air valve circuit breaker to trip and prevent the PRSOV from closing. This type of failure is not always a hard fault (always present). Therefore, if you find that the applicable circuit breaker has tripped or if it has tripped in the past, it is quite possible there is an intermittent short in the harness. A thorough check of the harness must be accomplished to determine if the harness must be replaced.

NOTE: A multimeter is required to perform the electrical checks in this procedure. If there is an intermittent short or the fault is not present at any point in the Fault Isolation

Procedure, you will need to use a megohmmeter instead of the multimeter to perform a more thorough check of the electrical circuit.

SIA ALL

36-10 TASK 802

Page 222 Jun 15/2023

- (a) If not already done, disconnect connector DP1104 at the firewall disconnect.
- (b) Do a visual examination of the Engine Harness, MW0311 for worn areas, deformed areas, loose or damaged connectors, and damaged pins and sockets:
 - 1) If there is obvious damage to the harness that could cause a short or open circuit, then replace the harness. These are the tasks:
 - 3 O'clock Strut Harness Removal, AMM TASK 73-21-06-000-802-F00
 - 3 O'clock Strut Harness Installation, AMM TASK 73-21-06-400-802-F00
 - a) Do the Repair Confirmation at the end of this task.
 - 2) If there is no obvious damage to the harness, then continue.
- (c) Examine these circuits of the Engine Harness, MW0311 for continuity:

DP110	DP1104	
pin 7		pin 12
pin 6		pin 11
pin 5		pin 3
pin 10		pin 10
pin 9		pin 2

- If any of the circuits fail the continuity check, then replace the Engine Harness, MW0311. These are the tasks:
 - 3 O'clock Strut Harness Removal, AMM TASK 73-21-06-000-802-F00
 - 3 O'clock Strut Harness Installation, AMM TASK 73-21-06-400-802-F00
 - a) Do the Repair Confirmation at the end of this task.
- 2) If there is continuity in all of the circuits, then continue.
- (d) If the applicable circuit breaker C796 (C797) was tripped or has a history of tripping, do these steps:
 - Disconnect the applicable connectors DP1103 from the Ground WTAI Temperature Solenoid valve and DP1101 from the Fan Frame Compressor Case Vibration sensor.

MAKE SURE THAT YOU USE STANDARD WIRING MAINTENANCE PRACTICES WHEN YOU DO THE MEG CHECK. IF YOU DO NOT OBEY, DAMAGE TO EQUIPMENT CAN OCCUR.

 Use a megohmmeter to examine the Engine Harness, MW0311 circuits listed below for internal shorts:

36-10 TASK 802

SIA ALL

EFFECTIVITY

DP1104	DP1104
pin 12	pin 1
pin 12	pin 2
pin 12	pin 5
pin 12	pin 10
pin 12	pin 11
pin 12	pin 14
pin 3	pin 1
pin 3	pin 2
pin 3	pin 5
pin 3	pin 10
pin 3	pin 11
pin 3	pin 12
pin 3	pin 14

- 3) Use a megohmmeter to do a check of pins 5, 7 and 10 of connector DP1102 to the connector backshell.
- 4) If any of the checks with the megohmmeter failed, replace the engine harness, MW0311. These are the tasks:
 - 3 O'clock Strut Harness Removal, AMM TASK 73-21-06-000-802-F00
 - 3 O'clock Strut Harness Installation, AMM TASK 73-21-06-400-802-F00
 - a) Do the Repair Confirmation at the end of this task.
- 5) If the checks with the megohmmeter are satisfactory, then continue.
- 6) If the circuit breaker continues to trip open, use WDM 36-11-11 to perform additional checks for the source of the ground fault.

G. Open Electrical Circuit - Fault Isolation Procedure

(1) Do the steps that follow to do a check for an open circuit:

NOTE: These steps examine the electrical circuitry between the circuit breaker and the engine firewall connector.

- (a) Lower the Forward Overhead Panel, P5 to get access to the back of the P5-10 panel:
 - 1) Disconnect connector D646 (D680).
- (b) Do a continuity check between pin 18 (15) of connector D646 (D680) and pin 12 of connector D30204 (D30404).
 - 1) If there is no continuity, repair the problems that you find (WDM 36-11-11).
 - a) Do the Repair Confirmation at the end of this task.
 - 2) If there is continuity, then continue.
- (c) Do a continuity check between pins 18 and 33 of connector D646 (pins 15 and 14 of connector D680) on the P5-10 air conditioning panel as follows:
 - 1) Make sure the applicable engine BLEED switch is set to the OFF position.
 - 2) If there is no continuity, then replace the Air Conditioning Panel, P5-10. These are the tasks:
 - Air Conditioning Module Removal, AMM TASK 21-51-65-000-801
 - Air Conditioning Module Installation, AMM TASK 21-51-65-400-801

36-10 TASK 802

SIA ALL

EFFECTIVITY

Page 224 Jun 15/2023

- 3) Do the Repair Confirmation at the end of this task.
- 4) If there is continuity, then continue.
- (d) Do this check for 28V DC at pin 33 (14) of connector D646 (D680) on the ship's wiring:
 - 1) Make sure the OVHT DET switches on the Fire Control Panel, P8-1, are in the NORMAL position.
 - 2) Make sure there is 22-30V DC present at pin 33 (14) of connector D646 (D680).
 - 3) If there is not 22-30V DC present at pin 33 (14) of connector D646 (D680), then repair the circuit problems you find (WDM 36-11-11).
 - a) Do the Repair Confirmation at the end of this task.

H. Repair Confirmation

- (1) Re-install all components that were removed.
 - (a) Make sure that the installation test or operational test for each component installed has been accomplished.
 - 1) If the appropriate test has not already been accomplished, perform the test.
- (2) Re-connect all connectors that were disconnected.
- (3) Reinstall all access panels that were removed.

EFFECTIVITY

SIA ALL

OBEY THE INSTRUCTIONS IN THE PROCEDURE TO CLOSE THE THRUST REVERSERS. IF YOU DO NOT OBEY THE INSTRUCTIONS, INJURIES TO PERSONS AND DAMAGE TO EQUIPMENT CAN OCCUR.

- (4) Close the left thrust reverser. This is the task: Close the Thrust Reverser (Selection), AMM TASK 78-31-00-010-804-F00.
- (5) Close the Fan Cowl Panels. This is the task: Close the Fan Cowl Panels, AMM TASK 71-11-02-410-801-F00.
- (6) Activate Leading Edge Flaps and Slats. This is the task: Leading Edge Flaps and Slats -Activation, AMM TASK 27-81-00-440-801.
- (7) Do this procedure: Thrust Reverser Activation After Ground Maintenance, AMM TASK 78-31-00-440-803-F00.
- (8) Make sure that the pressure indication on the Dual Duct Pressure Indicator is less than 2.0 psi (13.8 kPa).
- (9) Supply pressure to the pneumatic system with the engine on the applicable side. This is the task: Supply Pressure to the Pneumatic System with One or Both Engines, AMM TASK 36-00-00-860-804.
- (10) Set these pneumatic system control switches to the positions shown:
 - (a) APU BLEED switch to OFF
 - (b) ISOLATION VALVE switch to CLOSE
- (11) If applicable, remove any external pneumatic source.
- (12) Do these steps to do a check of the operation of the engine BLEED switch/PRSOV:
 - NOTE: The engine BLEED switch will be cycled in these steps to make sure that there are no intermittent malfunctions in the system operation.
 - (a) Set the applicable engine BLEED 1 or 2 switch to the OFF position.

- (b) Make sure that the Pointer for the applicable system on the Dual Duct Pressure Indicator decreases to less than 10 psi (68.9 kPa).
- (c) Set the applicable engine BLEED switch to the ON position.
- (d) Make sure that the Manifold Pressure Pointer for the applicable system increases to 10 psi (68.9 kPa) 25 psi (172.4 kPa) with the engine at steady idle without user systems in operation.

NOTE: The Duct Pressure Pointers on the Dual Duct Pressure Indicator may fluctuate without user systems in operation.

- (e) Set the applicable engine BLEED switch to the OFF position
- (f) Make sure that the applicable pointer on the Dual Duct Pressure Indicator decreases to less than 10 psi (68.9 kPa).
- (13) If the Manifold Pressure Pointer decreases to less than 10.0 psi (68.9 kPa) when the applicable engine bleed switch is set to OFF, then you corrected the fault.
 - (a) Do these steps to complete the task:
 - 1) Do the Stop the Engine Procedure (Usual Engine Stop), AMM TASK 71-00-00-700-819-F00.
 - 2) Remove Pressure from the Pneumatic System. This is the task: Remove Pressure from the Pneumatic System, AMM TASK 36-00-00-860-806.
- (14) If the Repair Confirmation is unsatisfactory, return to the step in the Fault Isolation Procedure that you were at prior to performing the Repair Confirmation and continue the fault isolation procedure with these constraints:

DO THESE SPECIFIED TASKS IN THE CORRECT SEQUENCE BEFORE YOU OPEN THE THRUST REVERSER: RETRACT THE LEADING EDGE FLAPS AND SLATS, DEACTIVATE THE LEADING EDGE FLAPS AND SLATS, DEACTIVATE THE THRUST REVERSER (FOR GROUND MAINTENANCE) AND OPEN THE FAN COWL PANEL. FAILURE TO OBEY THE ABOVE SEQUENCE MAY RESULT IN INJURIES TO PERSONS AND DAMAGE TO EQUIPMENT.

- (a) Retract the Leading Edge Flaps and Slats.
- (b) Deactivate the Leading Edge Flaps and Slats. This is the task: Leading Edge Flaps and Slats Deactivation, AMM TASK 27-81-00-040-801.
- (c) Deactivate the applicable thrust reverser. This is the task: Thrust Reverser Deactivation For Ground Maintenance, AMM TASK 78-31-00-040-802-F00.
- (d) Open the applicable thrust reverser. This is the task: Open the Thrust Reverser (Selection), AMM TASK 78-31-00-010-801-F00.

ENID		FACIZ	
 END	OF 1	ASK	

36-10 TASK 802

SIA ALL

· EFFECTIVITY

803. Duct Pressure High, the Engine is the Bleed Source - Fault Isolation

A. Description

- (1) (SDS SUBJECT 36-11-00, SDS SUBJECT 36-12-00)
- (2) A high duct pressure condition is a condition in which one or both pointers on the dual duct pressure indicator are higher than 50 psi, with the engines as the bleed source when operating on regulated 5th stage pressure in a stabilized condition. If you have a pilot report or an observed fault and you know the bleed pressure, engine N1 speed, and the altitude at the time the fault was observed, you can determine if the system was operating within limits. If you have this information, use the information in Figure 305, Duct Pressure Versus N1 at Various Altitudes, to determine if the duct pressure was within the operating limits. If you do not have this information, you must perform a high power engine run during the Initial Evaluation to obtain that information.

B. Possible Causes

(1) Pressure regulator and shutoff valve (PRSOV)

(a) Failure Mode: sticking

(2) Bleed air regulator, M1180

(a) Failure Mode: Incorrect regulation

(3) Leak in the downstream pressure sense line or fittings(36-10 TASK SUPPORT Figure 307)

NOTE: The downstream pressure sense line runs between the high stage regulator and the bleed air outlet side of the precooler. There is also a line from the PRSOV that is connected by a tee fitting to the downstream pressure sense line.

- (a) Failure Mode:
 - The downstream pressure sense line is also connected to the high stage regulator.
 A leak anywhere in that sense line tubing or sense line fittings can cause a high duct pressure condition. This includes the line to the high stage regulator.
- (4) Wiring
 - (a) Failure Mode: Indication circuit wiring problem
- (5) Duct pressure transducer, T405 (Left) or T403 (Right)
 - (a) Failure Mode: Out-of-tolerance or faulty transducer
- (6) Dual duct pressure indicator, N12
 - (a) Failure Mode: Out-of-tolerance or faulty indicator

C. Circuit Breakers

(1) These are the primary circuit breakers related to the fault:

F/O Electrical System Panel. P6-4

			- , -
Row	<u>Col</u>	Number	<u>Name</u>
Α	5	C00259	AIR CONDITIONING BLEED AIR VALVE ISLN
Α	6	C01470	AIR CONDITIONING BLEED AIR XDCR LEFT
Α	7	C00796	AIR CONDITIONING BLEED AIR VALVES L
В	5	C00077	AIR CONDITIONING BLEED AIR PRESS IND
В	6	C01469	AIR CONDITIONING BLEED AIR XDCR RIGHT
В	7	C00797	AIR CONDITIONING BLEED AIR VALVES R

SIA ALL

36-10 TASK 803

Page 227 Jun 15/2023

D. Related Data

- (1) Component Location (36-10 TASK SUPPORT Figure 301)
- (2) Component Location (36-10 TASK SUPPORT Figure 302)
- (3) Troubleshooting Check (36-10 TASK SUPPORT Figure 307)
- (4) (36-10 TASK SUPPORT Figure 305), Duct Pressure Versus N1 at Sea Level and 5000 feet
- (5) (36-10 TASK SUPPORT Figure 305), Duct Pressure Versus N1 at Sea Level, 10K feet, 22K feet, 31K feet, 37K feet and 41K feet
- (6) (36-10 TASK SUPPORT Figure 311), Pneumatic System Control Valve Position Indicators
- (7) (SSM 36-11-11)
- (8) (WDM 36-21-11)

E. Initial Evaluation

- (1) If you have a pilot report or an observed fault and you know the bleed pressure, engine N1 speed and the altitude at the time the fault was observed, then use the "Duct Pressure versus N1 at Sea level and 5000 feet" graph or the "Duct Pressure versus N1 at Sea Level, 10K feet, 22K feet, 31K feet, 37K feet and 41K feet" graph to determine if one or both engine pneumatic systems have High Duct Pressure.
- (2) If you determine that one or both systems have High Duct Pressure, perform the Fault Isolation Procedure.
- (3) If you determine that the Duct Pressure for both systems are within limits, then no further action is necessary.
 - (a) Review the aircraft's pneumatic system history to see if there have been reports of high duct pressure in the past. If there have been reports of high duct pressure in the past, you should perform the Fault Isolation Procedure. If not, you should monitor the aircraft's pneumatic system on subsequent flights.
- (4) If you do not have the necessary information to use the graphs to determine if the duct pressure was high, then continue with the Initial Evaluation Procedure.
- (5) Supply pressure to the pneumatic system using the APU. To supply pressure, do this task: Supply Pressure to the Pneumatic System with the APU, AMM TASK 36-00-00-860-803.
 - (a) Make sure that the ISOLATION VALVE switch is set to OPEN.
 - (b) Make sure that these conditions occur:
 - 1) The pressure on the dual duct pressure indicator increases to a minimum of 12 psi
 - 2) The duct pressure pointers are within 3 psi of each other.
 - 3) If the duct pressure pointers are not within 3 psi of each other, then do the Fault Isolation below before you proceed.
 - a) Do this task: Duct pressure, L and R pointers not the same (split) the APU is the bleed source Fault Isolation, 36-10 TASK 808.

4) If the indicated pressures are satisfactory, then continue.

NOTE: The subsequent steps of this Initial Evaluation procedure are very similar to the Repair Confirmation procedure. Both procedures involve a high power engine run to either confirm a fault exists or confirm that you have corrected the fault. Therefore, if you suspect that a fault or faults with the bleed system exist, you may proceed to the Fault Isolation procedure without completing the Initial Evaluation procedure to save time. To complete the Initial Evaluation procedure will only prolong the length of time required to return the aircraft to service by performing the high power engine run twice, getting the pneumatic system components very hot and needing more time to allow the components to cool down before working on them. However, if you suspect that there are no faults, then continue.

- (6) Supply pressure to the pneumatic system with the engine with the reported high bleed pressure or both engines if you suspect a problem with both systems. To supply pressure, do this task: Supply Pressure to the Pneumatic System with One or Both Engines, AMM TASK 36-00-00-860-804.
 - (a) Position the APU BLEED switch to OFF and remove any external pneumatic source, if applicable.
 - (b) Set the ISOLATION VALVE switch on the P5-10 forward overhead panel to CLOSE.
 - (c) Make sure that the duct pressure pointer for the applicable system(s) indicates between 10-25 psi.

<u>NOTE</u>: The duct pressure pointer on the dual duct pressure indicator may fluctuate without any user system in operation.

DO NOT EXCEED THE ENGINE OPERATION LIMITS. FAILURE TO COMPLY WITH THE ENGINE OPERATION LIMITS COULD RESULT IN ENGINE DAMAGE.

- (7) Do not exceed the engine operation limits in the next step. To operate the engine within limits, do this task: Engine Operation Limits, AMM TASK 71-00-00-800-806-F00.
- (8) Slowly increase N1 to 80% or greater and make sure that the duct pressure follows the "Duct Pressure versus N1 at Sea Level and 5000 feet" graph as the N1 speed increases.
- (9) Examine the dual duct pressure indicator, N12, on the P5-10 panel.
- (10) Make sure that the dual duct pressure pointers are not higher than 50 psi.
- (11) If the duct pressure pointers on one or both sides are higher than 50 psi, then do the Fault Isolation Procedure below.
- (12) If the duct pressure pointers on both sides are not greater than 50 psi, then there was an intermittent fault and no further action is required.
- (13) Do this task: Stop the Engine Procedure (Usual Engine Stop), AMM TASK 71-00-00-700-819-F00.
- (14) Set the ISOLATION VALVE switch on the P5-10 panel to AUTO.
- (15) Remove pressure from the pneumatic system. To remove pressure, do this task: Remove Pressure from the Pneumatic System, AMM TASK 36-00-00-860-806.

SIA ALL

F. Fault Isolation Procedure

- (1) Do these steps to check the sense lines and fittings for leakage:
 - (a) Remove the pressure from the pneumatic system. To remove pressure, do this task: Remove Pressure from the Pneumatic System, AMM TASK 36-00-00-860-806.
 - (b) Make sure that the applicable engine bleed switch is in the OFF position.
 - (c) Make sure the fuel shutoff lever for the applicable engine is in the cutoff position and install DO-NOT-OPERATE tags.

DO THESE SPECIFIED TASKS IN THE CORRECT SEQUENCE BEFORE YOU OPEN THE THRUST REVERSER: RETRACT THE LEADING EDGE, DEACTIVATE THE LEADING EDGE, DEACTIVATE THE THRUST REVERSER (FOR GROUND MAINTENANCE), AND OPEN THE FAN COWL PANEL. IF YOU DO NOT OBEY THE ABOVE SEQUENCE, INJURIES TO PERSONS AND DAMAGE TO EQUIPMENT CAN OCCUR.

- (d) Retract the leading edge flaps and slats if not previously accomplished.
- (e) Deactivate the Leading Edge Flaps and Slats:
 - Do this task: Leading Edge Flaps and Slats Deactivation, AMM TASK 27-81-00-040-801.
- (f) Deactivate the applicable thrust reverser:
 - 1) Do this task: Thrust Reverser Deactivation For Ground Maintenance, AMM TASK 78-31-00-040-802-F00.
- (g) Open the applicable thrust reverser:
 - 1) Do this task: Open the Thrust Reverser (Selection), AMM TASK 78-31-00-010-801-F00.
- (h) Supply pressure to the pneumatic system with the APU or a ground air source. To supply pressure, do this task: Supply Pressure to the Pneumatic System (Selection), AMM TASK 36-00-00-860-801.
- (i) Use a soap solution to detect any leakage in the sense line tubing and sense line fittings from the high stage regulator and the sense line tubing and fittings from the PRSOV that connect together and run to the downstream sense port on the precooler.

NOTE: A leak in the downstream sense line or sense line fitting to the PRSOV can cause the PRSOV to regulate high and cause a high duct pressure condition. Leakage in other sense lines and fittings should be repaired even though the leakage will not cause a high duct pressure condition.

- (j) Make sure that there are no leakages.
- (k) If you find leakage, then do these steps:
 - 1) Remove the pressure from the pneumatic system. To remove pressure, do this task: Remove Pressure from the Pneumatic System, AMM TASK 36-00-00-860-806.
 - 2) Repair the leakages found.
 - 3) Do the Repair Confirmation at the end of this task.
- (I) If you do not find any leakage, then continue.
- (2) Do this check of the PRSOV for correct operation.
 - (a) Remove the pressure from the pneumatic system. To remove pressure, (AMM TASK 36-00-00-860-806).

SIA ALL

- (b) Look at the position indicator on the PRSOV.
- (c) If the PRSOV is not completely closed, then replace it:
 - These are the tasks:
 - PRSOV Removal, AMM TASK 36-11-04-000-801
 - PRSOV Installation, AMM TASK 36-11-04-400-801
 - Do the Repair Confirmation at the end of this task.
- (d) If the PRSOV is completely closed, do the steps that follow:
 - 1) Use a wrench on the manual override nut to open the valve.
 - 2) Remove the wrench and make sure that the PRSOV closes smoothly.
 - If the PRSOV does not move to the open and closed position smoothly, then replace the PRSOV:
 - a) These are the tasks:
 - PRSOV Removal, AMM TASK 36-11-04-000-801
 - PRSOV Installation, AMM TASK 36-11-04-400-801
 - b) Do the Repair Confirmation at the end of this task.
 - 4) If the PRSOV moves to the open and closed position smoothly, then continue.
- (3) Do these tests of the bleed air regulator control pressure:
 - (a) Disconnect the bleed air supply line at the inlet to the tee at the supply pressure sense line to the bleed air regulator.
 - (b) Connect a nitrogen pressure source, pressure regulator, supply pressure gage (Ps) and test hose at the tee to the supply pressure sense line (36-10 TASK SUPPORT Figure 307, View A).
 - NOTE: The test equipment used in this or subsequent steps is part of P/N C36001-44 Engine Bleed Air System Test Equipment listed in the 737 Illustrated Tool and Equipment List (ITEL). Equivalent test equipment to that specified in P/N C36001-44 can also be used.
 - (c) Disconnect the control pressure sense line fom the PRSOV (36-10 TASK SUPPORT Figure 307, View B).
 - (d) Install a 30 psi control pressure gage (Pc) between the flex line and the PRSOV.
 - 1) If you use an equivalent control pressure gage to the one specified in P/N C36001-44, make sure that the indication increments are no greater than 0.2 psi and that the gage accuracy is +/- 0.5% full scale.
 - (e) Set the applicable engine bleed switch on the P5-10 panel to the ON position.
 - (f) Adjust the regulator on the nitrogen pressure source, STD-1455 to provide 230–250 psi (16–17 Bar or 1600-1700 kPa) to the pressure regulator, STD-1454.
 - (g) Slowly increase Ps to 60-70 psig.

SIA ALL

- (h) Make sure that Pc is between 20-28 psig.
- (i) If Pc is between 20-28 psig, then do these steps:
 - Replace the PRSOV. These are the tasks:
 - PRSOV Removal, AMM TASK 36-11-04-000-801
 - PRSOV Installation, AMM TASK 36-11-04-400-801
 - 2) Do the Repair Confirmation at the end of this task.

EFFECTIVITY 36-10 TASK 803

- (j) If Pc is not between 20-28 psig, then do these steps:
 - 1) Replace the bleed air regulator. These are the tasks:
 - Bleed Air Regulator Removal, AMM TASK 36-11-03-000-801
 - Bleed Air Regulator Installation, AMM TASK 36-11-03-400-801
 - 2) Do the Repair Confirmation at the end of this task.

G. Repair Confirmation

- (1) Remove all pressure gages, associated test equipment and hardware.
- (2) Re-connect all sense lines that were disconnected.
 - (a) Use Never-Seez Pure Nickel Special anti-seize compound (or equivalent) when you
 reconnect the sense lines.

OBEY THE INSTRUCTIONS IN THE PROCEDURE TO CLOSE THE THRUST REVERSERS. IF YOU DO NOT OBEY THE INSTRUCTIONS, INJURIES TO PERSONS AND DAMAGE TO EQUIPMENT CAN OCCUR.

- (3) For the left thrust reverser, do this task: Close the Thrust Reverser (Selection), AMM TASK 78-31-00-010-804-F00.
- (4) Activate the applicable thrust reverser:
 - (a) Do this task: Thrust Reverser Activation After Ground Maintenance, AMM TASK 78-31-00-440-803-F00.
- (5) Close the fan cowl panels, do this task: Close the Fan Cowl Panels, AMM TASK 71-11-02-410-801-F00.
- (6) Reactivate the Leading Edge Flaps and Slats, do this task: Leading Edge Flaps and Slats -Activation. AMM TASK 27-81-00-440-801.

804. Duct Pressure Low, the Engine is the Bleed Source - Fault Isolation

A. Description

- (1) A low duct pressure condition is a condition in which one or both pointers on the Dual Duct Pressure Indicator are lower than 34 psi (234 kPa) with the engines as the bleed source when operating on the regulated 5th stage pressure as determined by using the "Duct Pressure Versus N1 at Various Altitudes" graphs. The graphs are based on steady state operating conditions.
- (2) The normal operating limits of the Bleed System within the regulated 9th stage pressure area is 32 ±6 psi (221 ±41 kPa) and within the regulated 5th stage is 42 ±8 psi (290 ±55 kPa). These limits do not apply to the unregulated 9th stage, the unregulated 5th stage, the 9th stage to 5th stage switchover when the engine throttle is advanced or the 5th stage to 9th stage switchover when the engine throttle is retarded.

36-10 TASKS 803-804

EFFECTIVITY
SIA ALL

- (3) If you have the necessary information, you can determine if the Bleed System is operating properly without operating the engine by using the "Duct Pressure Versus N1 at Various Altitudes" graphs, (36-10 TASK SUPPORT Figure 305). If you do not have this information, you must perform a high power engine run during the Initial Evaluation to obtain that information. Determining the mode of operation of the bleed system at the time the fault was observed can be very helpful in determining the possible cause of the fault. For example, if the duct pressure was low when the throttles were retarded during descent, the problem is most likely with the High Stage Valve (HSV), High Stage Regulator (HSR), or the Sense Lines between the two components. Ultimately, the most valuable tool in the fault isolation of this system is a thorough working knowledge of the system operation.
- (4) If the N1 speed of the engine and altitude of the aircraft at the time the fault was observed places the Bleed System in the regulated 5th stage pressure area of the graph, the duct pressure should not be lower than 34 psi (234 kPa). In the regulated 9th stage area of the graph, the duct pressure should not be lower than 26 psi (179 kPa). If the bleed system was in the unregulated 9th stage area, the pressure can be significantly lower than 26 psi (179 kPa) but should not be less than 10 psi (69 kPa).
 - NOTE: Recommended Airplane Condition And Monitoring System (ACMS) low duct pressure alert for regulated 5th stage area is duct pressure less than 28 psi (193 kPa). For regulated 9th stage area, the low pressure alert is duct pressure less than 22 psi (152 kPa) (Service Letter 36-024). If duct pressure is less than the normal operating limits for the regulated 5th and 9th stage areas shown on (36-10 TASK SUPPORT Figure 305), but equal to or greater than the recommended alert limits, maintenance action can be deferred until duct pressure is below the recommended alert limits.
- (5) If inflight duct pressures are below the values shown on 36-10 TASK SUPPORT Figure 305 during takeoff, climb and cruise but greater than 18 psig (124 kPa) and the aircraft is able to pressurize normally, the bleed system is experiencing drifting performance but is still serviceable. The aircraft may be operated normally but maintenance action should be taken to restore the bleed system performance to normal operation at the operator's earliest convenience.
- (6) If duct pressures below 18 psig (124 kPa) are noted during takeoff, climb and cruise, the Bleed System is operating below acceptable performance and fault isolation is required to return the Pneumatic System to acceptable performance.
- (7) If inflight pneumatic duct pressures are less than 18 psig (124 kPa), but not less than 10 psig (69 kPa) after the top of descent, no fault isolation check is necessary. This condition is considered normal, especially if Cowl Thermal Anti-Icing (CTAI) and/or Wing Thermal Anti-Ice (WTAI) are on.

B. Possible Causes

- (1) Precooler Control Valve (PCCV)
 - (a) Failure Mode: Valve not modulating correctly or stuck closed.
- (2) Precooler Control Valve Sensor (390° F Sensor)
 - (a) Failure Mode: Sensor is out-of-tolerance, stuck closed or plugged.
- Pressure Regulating and Shutoff Valve (PRSOV)
 - (a) Failure Mode: Sticking butterfly valve.
- (4) Bleed Air Regulator, M1180
 - (a) Failure Mode: regulates control pressure too low (Service Letter 71-051).
- (5) 450° F Thermostat

SIA ALL

(a) Failure Mode: Failed open.

EFFECTIVITY 36-10 TASK 804

- (6) High Stage Valve (HSV)
 - (a) Failure Mode: Sticky valve.
- (7) High Stage Regulator (HSR)
 - (a) Failure Mode: Not regulating properly.
- (8) Kiss Seal
 - (a) Failure Mode: Damaged, Foreign Object Debris (FOD), blocked fan airflow.
- (9) Precooler
 - (a) Failure Mode: Degraded operational capability.
- (10) Leaky Sense Lines or Fittings
 - (a) Failure Mode: loose connections or damaged lines.
 - (b) Leakage at these sense lines or sense line fittings can cause low duct pressures:
 - 1) Transducer Sense Line: low duct pressure Auxiliary Power Unit (APU) and engines (all phases of operation).
 - 2) Pressure Regulating and Shutoff Valve (PRSOV) Control Pressure Line from Bleed Air Regulator (BAR) to PRSOV and 450° F Thermostat line (5th and 9th stage operation).
 - 3) Supply line to the BAR (5th and 9th stage operations).
 - 4) Control Pressure Line between the HSR and HSV (9th stage operation).
 - 5) Supply Pressure Line to HSR (9th stage operations).
 - Sense Line between the Precooler Control Valve (PCCV) and the 390° F PCCV Sensor (obstructed, not leaking).
- (11) Duct Pressure Transducer, T405 (Left) or T403 (Right)
 - (a) Failure Mode: Out-of-tolerance or faulty transducer.
- (12) Dual Duct Pressure Indicator, N12
 - (a) Failure Mode: Out-of-tolerance or faulty indicator.
- (13) Bleed Air Check Valve (Stage 5)
 - (a) Failure Mode: Valve stuck closed
 - (b) A stuck 5th Stage Bleed Air Check Valve will result in very low duct pressure (close to 0 psi) when the system switches from 9th stage to 5th stage bleed air at approximately 60% N1 at sea level.

C. Circuit Breakers

(1) These are the primary circuit breakers related to the fault:

F/O Electrical System Panel, P6-4

Row	<u>Col</u>	<u>Number</u>	<u>Name</u>
Α	5	C00259	AIR CONDITIONING BLEED AIR VALVE ISLN
Α	6	C01470	AIR CONDITIONING BLEED AIR XDCR LEFT
Α	7	C00796	AIR CONDITIONING BLEED AIR VALVES L
В	5	C00077	AIR CONDITIONING BLEED AIR PRESS IND
В	6	C01469	AIR CONDITIONING BLEED AIR XDCR RIGHT
В	7	C00797	AIR CONDITIONING BLEED AIR VALVES R

EFFECTIVITY
SIA ALL

D. Related Data

- (1) Component Location (36-10 TASK SUPPORT Figure 301)
- (2) Component Location (36-10 TASK SUPPORT Figure 302)
- (3) Duct Pressure Versus N1 at Sea Level and 5000 Feet Graph (36-10 TASK SUPPORT Figure 305)
- (4) Duct Pressure Versus N1 at Sea Level, 10K, 22K, 31K, 37K and 41K Feet Graph (36-10 TASK SUPPORT Figure 305)
- (5) Troubleshooting Check (36-10 TASK SUPPORT Figure 308)
- (6) Pneumatic System Control Valve Position Indicators (36-10 TASK SUPPORT Figure 311)
- (7) SSM 36-11-11
- (8) WDM 36-11-11
- (9) SDS SUBJECT 36-11-00
- (10) SDS SUBJECT 36-12-00.

E. Initial Evaluation

SIA ALL

(1) If you have a pilot report or an observed fault of low duct pressure and you know the bleed pressure, the N1 speed of the applicable engine and the altitude of the aircraft at the time the fault was observed, use the "Duct Pressure Versus N1 at 10K, 22K, 31K, 37K or 41K feet" graph or the "Duct Pressure Versus N1 at Sea Level and 5000 feet" graph to determine if the pressure is within limits.

NOTE: If the inflight pneumatic duct pressures are within the values shown in 36-10 TASK SUPPORT Figure 305, the Bleed System is operating normally and no maintenance action is required.

If the inflight pneumatic duct pressures are below the values shown in 36-10 TASK SUPPORT Figure 305 but are 18 psig (124 kPa) or greater, the Bleed System is experiencing drifting performance. The airplane can be operated normally (without imposing the Minimum Equipment List (MEL)), but action should be taken to investigate and restore the bleed system performance to normal operation at a convenient opportunity.

If the inflight pneumatic duct pressures are less than 18 psig (124 kPa), the Bleed System will not ensure normal operation of the user systems and the bleed system should be considered inoperative. The Bleed System should be investigated and restored to normal operation before flight or declared inoperative and impose the MEL restriction for continued operation.

NOTE: If the fault was observed at an altitude other than sea level, 5000 ft (1524 m), 10,000 ft (3048 m), 22,000 ft (6706 m), 31,000 ft (9449 m), 37,000 ft (11,278 m), or 41,000 ft (12,497 m), you may use the altitude line on the graph that is closest to the altitude the fault was observed at provided that the N1 speed of the engine at that time was sufficient for the pneumatic system to be operating in the regulated 5th stage or regulated 9th stage pressure areas on both the higher and lower altitude lines on the graph. For example, if the pilot report indicated a low duct pressure at 16,000 ft (4877 m) during climb with the engine N1 speed at 88%, you can see that both the 10,000 ft (3048 m) and 22,000 ft (6706 m) altitude lines on the graph indicate that the system should be operating within the regulated 5th stage pressure of 42 ±8 psi (290 ±55 kPa) at the N1 speed of 88% (36-10 TASK SUPPORT Figure 305).

NOTE: If the N1 engine speed and altitude at the time the fault was observed fall within the 5th to 9th stage switchover area, the duct pressure can decay to as low as 20 psi (138 kPa) below 5000 ft (1524 m) and even lower than 20 psi (138 kPa) at higher altitudes when the throttles are retarded before the HSV opens. This is a typical response during the 5th to 9th stage transition and is considered normal operation.

- (a) If you are not certain that the bleed system was operating in the regulated 5th or regulated 9th stage areas, then continue with this Initial Evaluation procedure to determine if the system pressure was normal for the mode of operation that the Bleed System was in at the time the fault was observed.
- (b) If the bleed pressure is not within limits, proceed to the Fault Isolation Procedure.
- (c) If the bleed pressure is within limits, then the bleed system is functioning normally and no further action is necessary provided there were no faults reported with associated systems.
 - 1) Find if there are any reports of associated faults with the user systems at the time the fault was observed such as air conditioning, pressurization, WTAI or CTAI. If there are associated faults, perform the appropriate Fault Isolation Manual (FIM) task for the specific fault. If there are no associated faults, you should review the aircraft's pneumatic system history. If the system does have a recent history of problems, you should perform the Fault Isolation Procedure. If there is no history of problems with the system, then you should monitor the system on subsequent flights. If you are not certain that the system is operating properly, then continue.
- (2) If you suspect that the Pneumatic System has faults based on the aircraft's pneumatic system history or if there are associated faults with systems like the air conditioning or pressurization systems, you may proceed to the Fault Isolation Procedure without completion of the Initial Evaluation procedure to save time.

NOTE: The tables below list possible causes and effects of low duct pressure.

Possible Causes and Effects of Low Duct Pressure.

FIRST COMPONENT FAULT AND FAILURE MODE	FIRST FAULT SUBSYSTEM EFFECT	SYSTEM EFFECT	FLIGHT DECK EFFECT
INDICATION ERROR			

SIA ALL

Possible Causes and Effects of Low Duct Pressure. (Continued)

FIRST COMPONENT FAULT AND FAILURE MODE	FIRST FAULT SUBSYSTEM EFFECT	SYSTEM EFFECT	FLIGHT DECK EFFECT	
Duct Pressure Transmitter out of calibration				
Duct Pressure Indicator out of calibration	Indication Fault	Indication Fault	LOW DUCT PRESSURE	
Wiring open or short between the Transmitter and Indicator				
LOW ENGINE POWER SETTING (ground idle, taxi, flight idle)				
Ps Sense Line leak between 9th stage supply to HSR		HSV regulation is lower than normal, resulting in low	LOW DUCT PRESSURE	
HSR - Shutoff struck CLOSED - Regulator failure - Relief Valve stuck OPEN - Reverse Flow Diaphragm operated Poppet Valve stuck OPEN	Low or no opening force to HSV			
Pc Sense Line leak between HSR and HSV		duct pressure		
HSV: - sticks CLOSED - excessive leakage on opening piston	HSV does not OPEN			
ANN OR ALL ENGINE				
ANY OR ALL ENGINE POWER SETTINGS				

SIA ALL

Possible Causes and Effects of Low Duct Pressure. (Continued)

FIRST COMPONENT FAULT AND FAILURE MODE	FIRST FAULT SUBSYSTEM EFFECT	SYSTEM EFFECT	FLIGHT DECK EFFECT	
Ps Sense Line leak between 5th stage supply to BAR	SUBSTSTEM EFFECT		EFFECT	
BAR -reference regulator failure - Relief Valve has excessive leakage	Low opening force to PRSOV			
Pc Sense Line leak between the BAR and PRSOV		PRSOV regulation is lower than normal, resulting in low duct pressure		
PRSOV - sticks CLOSED - excessive leakage on opening piston	PRSOV does not OPEN		LOW DUCT PRESSURE	
Pc sense line leaks between the PRSOV and 450° F Thermostat				
450° F Thermostat - stuck OPEN - excessive leakage -opens below 450° F	Low opening force to PRSOV			
HIGH/INTERMEDIATE ENGINE POWER SETTING (takeoff, climb, cruise)				

SIA ALL

Possible Causes and Effects of Low Duct Pressure. (Continued)

FIRST COMPONENT FAULT AND FAILURE MODE	FIRST FAULT SUBSYSTEM EFFECT	SYSTEM EFFECT	FLIGHT DECK EFFECT	
HSV - does not fully CLOSE - excessive internal bore leakage	5th stage supply engine bleed air temperature is higher than normal	Second level of		
Ps Sense Line leaks between the 5th stage manifold and the PCCV		temperature control becomes active. 450° F Thermostat opens		
PCCV fault; does not OPEN		causing the PRSOV		
Pc Sense Line plugged between the PCCV and 390° F Sensor	First level of temperature control is degraded or	regulated pressure to decrease NOTE: This is normal operation of the second level of temperature control.	LOW DUCT PRESSURE	
390° F Sensor does not OPEN	not functioning			
Kiss Seal torn or degraded				
Fan air blockage				
Precooler damaged or fan air path blocked				
Reverse Flow Diaphragm in the HSR is ruptured	Causes elevated downstream pressure sensed by the PRSOV	PRSOV regulated pressure is lower than normal. NOTE: Low pressure occurs at start of cruise phase and gradually increases as cruise progresses.		
5th Stage Bleed Air Check Valve -Stuck CLOSED	5th Stage Bleed Air Check Valve does not OPEN	Very low (close to 0 psi) duct pressure after system switches over from 9th stage to 5th stage bleed air at approximately 60% N1 at Sea Level		

SIA ALL

36-10 TASK 804

Page 239 Jun 15/2023

Low Duct Pressure Fault Table Organized by Flight Phase.

CONDITION	GROUND/TAXI	TAKEOFF	CLIMB	CRUISE	IDLE DESCENT
Normal Operation	WTAI OFF - 18 psig (124 kPa) - 22 psig (152 kPa) WTAI ON - 12 psig (83 kPa) - 14 psig (97 kPa) HSV: Full OPEN PRSOV: Full OPEN PCCV: CLOSED Engine supply pressure and temperature are below regulation levels.	34 psig (234 kPa) - 50 psig (345 kPa) HSV: CLOSED PRSOV: Regulating PCCV: Regulating Engine supply pressure and temperature are being regulated.	34 psig (234 kPa) - 50 psig (345 kPa) HSV: CLOSED PRSOV: Regulating PCCV: Regulating Engine supply pressure and temperature are being regulated.	26 psig (179 kPa) - 45 psig (310 kPa) HSV: May be CLOSED or Regulating PRSOV: May be Regulating or OPEN PCCV: May be Regulating or CLOSED At lower cruise settings, engine pressure and temperature may drop below regulated levels.	WTAI OFF - 18 psig (124 kPa) - 25 psig (172 kPa) HSV: Full OPEN PRSOV: Full OPEN PCCV: CLOSED Engine supply pressure and temperature are below regulation levels.
Ground/Taxi Fault	LOW PRESSURE No high stage air - HSR, HSV, or sense line leak	No Fault	No Fault	No Fault	No Fault
Takeoff Fault	No Fault	LOW PRESSURE Low regulated pressure - First level of temperature control not operating (PCCV/390° F Sensor, or plugged Sense Line) Temperature topping (450° F opens) - BAR, PRSOV, or Sense Line leak - HSV leakage.	No Fault	No Fault	No Fault

SIA ALL

36-10 TASK 804

Page 240 Jun 15/2023

Low Duct Pressure Fault Table Organized by Flight Phase. (Continued)

CONDITION	GROUND/TAXI	TAKEOFF	CLIMB	CRUISE	IDLE DESCENT
Climb Fault	No Fault	No Fault	LOW PRESSURE Low regulated pressure - First level of temperature control not operating (PCCV/390° F Sensor, or plugged Sense Line) Temperature topping (450° F opens) - BAR, PRSOV, or sense line leak - HSV leakage.	No Fault	No Fault
Cruise Fault	No Fault	No Fault	No Fault	LOW PRESSURE Low regulated pressure - First level of temperature control not operating (PCCV/390° F Sensor, or plugged sense line) - BAR, PRSOV, or sense line leak HSR reverse flow diaphragm rupture. Low duct pressure starts at start of cruise and gradually goes away during cruise.	No Fault
Descent Fault	No Fault	No Fault	No Fault	No Fault	LOW PRESSURE No high stage air - HSR, HSV, or sense line leak.

NOTE: The subsequent steps of this Initial Evaluation Procedure are very similar to the Repair Confirmation Procedure. Both procedures involve a high power engine run to either confirm a fault exists or confirm that you have corrected the fault.

(a) If you suspect that there are no faults, then continue.

SIA ALL

- (3) If you do not have the necessary information to determine if the bleed pressure is within limits, then continue with the Initial Evaluation procedure.
- (4) Make sure that the ISOLATION VALVE Switch on the P5-10 Panel is set to the OPEN position.
- (5) Put the engine BLEED 1 and 2 Switches on the P5-10 Panel to OFF.
- (6) Supply pressure to the Pneumatic System with the APU. To supply pressure, do this task: Supply Pressure to the Pneumatic System with the APU, AMM TASK 36-00-00-860-803.
 - (a) Make sure that the manifold pressure on the Dual Duct Pressure Indicator, N12 increases to a minimum of 12 psi (83 kPa) for both the Left and Right Pneumatic Systems.
 - (b) Make sure that the pressure pointers on the Dual Duct Pressure Indicator, N12 are within 3 psi (21 kPa) of each other.
 - 1) If the pressure pointers on the Dual Duct Pressure Indicator, N12 are not within 3 psi (21 kPa) of each other, then do these steps:
 - Do the Duct pressure, L and R pointers not the same (split) the APU is the bleed source - Fault Isolation, 36-10 TASK 808.
 - b) Continue.
 - 2) If the indicated pressures are correct, then continue.
- (7) Supply pressure with the engine with the pneumatic system that has the report of low bleed pressure or both engines if you suspect a low bleed pressure problem on both sides. To supply pressure, do this task: Supply Pressure to the Pneumatic System with One or Both Engines, AMM TASK 36-00-00-860-804.
 - (a) Put the APU BLEED switch to OFF.
 - (b) If applicable, remove external pneumatic source.
 - (c) Put the ISOLATION VALVE switch on the P5-10 Panel to the CLOSE position.
 - (d) Make sure that the duct pressure pointer for the applicable Pneumatic System indicates between 10 psi (69 kPa) 25 psi (172 kPa).
 - NOTE: The duct pressure pointers on the Dual Duct Pressure Indicator, N12 may fluctuate without user systems in operation.
 - 1) If the duct pressure pointer for the applicable Pneumatic System does not indicate 10 psi (69 kPa) 25 psi (172 kPa), then perform the Fault Isolation Procedure.
 - 2) If the duct pressure pointer for the applicable Pneumatic System indicates 10 psi (69 kPa) 25 psi (172 kPa), then continue.
 - (e) Put the engine BLEED switch to the OFF position.
 - (f) Monitor that the duct pressure on the Dual Duct Pressure Indicator, N12 decreases to less than 10 psi (69 kPa).

NOTE: This indicates that the PRSOV has closed.

- If the PRSOV does not close properly, do the Bleed Valve Will Not Close When the Bleed Switches Are Moved to Off, the Engine Is the Bleed Source - Fault Isolation, 36-10 TASK 802.
 - NOTE: Faults with the Engine Harness MW0311, aircraft wiring and the BAR can cause both fault conditions (low duct pressure and bleed valve will not close). Therefore, the continuation of this Initial Evaluation with the engine high power run is not necessary to further isolate the fault.
- (g) Put the applicable engine BLEED switch to ON.

SIA ALL 36-10 TASK 804

(h) Make sure that the duct pressure on the Dual Duct Pressure Indicator increases to 10 psi (69 kPa) - 25 psi (172 kPa).

NOTE: The duct pressure pointers on the Dual Duct Pressure Indicator, N12 may fluctuate without user systems in operation.

- (8) Put the applicable PACK to normal operation.
 - (a) Put the switch on the P5-10 Panel in the AUTO position.
- (9) Do these steps to do a check of the Pneumatic System pressures:
 - (a) Operate the engine within the guidelines. This is the task: Engine Operation Limits, AMM TASK 71-00-00-800-806-F00.
 - (b) Slowly increase N1 in 5-10% increments on the applicable engine to 80% or greater and make sure the applicable pneumatic pressure indication follows the "Duct Pressure Versus N1 at Sea Level and 5000 Feet" graph and is within the limits of the graph (36-10 TASK SUPPORT Figure 305).
 - If either of these two conditions are observed, then perform the Fault Isolation Procedure below:
 - a) If the duct pressure is lower than the specified pressures on the graph or,
 - b) If the duct pressure is initially within limits of the graph and then drops to a very low duct pressure (close to 0 psi) when the system switches over from 9th stage to 5th stage at approximately 60% N1 at sea level, then the 5th Stage Bleed Air Check Valve may be stuck closed.
 - 2) If the duct pressures are within limits of the graph, then continue.
 - (c) Maintain the N1% setting at 80% or greater for a minimum of 5 minutes.
 - (d) Monitor the duct pneumatic pressures to make sure the pressures remain at 42 ±8 psi (290 ±55 kPa).
 - If the duct pressure starts to decrease after reaching a stable pressure of 42 ±8 psi (290 ±55 kPa), the problem is most likely temperature related and not a pressure regulation fault.
 - In this situation, either the HSV, HSR, PCCV or the 390° F PCCV Sensor is most likely to be at fault.
- (10) Examine the Dual Duct Pressure Indicator, N12 on the P5-10 Panel.
- (11) Make sure that the duct pressure pointers are not lower than 34 psig (234 kPa).
- (12) Slowly return the Throttle(s) to idle as you make sure that the duct pressure follows the "Duct Pressure Versus N1 at Sea Level and 5000 Feet" graph (36-10 TASK SUPPORT Figure 305).
 - (a) Make sure that the switchover from 5th stage regulation to 9th stage regulation occurs.
- (13) Once the Throttle is at IDLE, make sure the duct pressure is at 10 psi (69 kPa) 25 psi (172 kPa).
- (14) If the duct pressure pointer on one or both sides was lower than 34 psig (234 kPa) when the system was on regulated 5th stage pressure, lower than 20 psi (138 kPa) in the unregulated 5th stage mode, lower than 26 psi (179 kPa) when the system was on regulated 9th stage pressure or less than 10 psi (69 kPa) in the unregulated 9th stage mode, then do the Fault Isolation Procedure below.
- (15) If you do not find a fault with either the left or right pneumatic systems, then one of these situations exists:
 - (a) There was an intermittent fault.

EFFECTIVITY

SIA ALL

- (b) One or both of the Pneumatic Systems was operating in the 5th to 9th stage switchover, the 9th to 5th stage switchover, or the unregulated 9th stage which makes a duct pressure comparison invalid.
- (c) Continue to the next step for a possible course of action.
- (16) Use your judgement, airline policy, the history of the aircraft's pneumatic systems, and any reports of user systems malfunctions to determine which of the actions that follow to take:
 - (a) Monitor the system performance on subsequent flights.
 - (b) Perform the Engine Bleed System Health Check and the PCCV System Health Check.
- (17) Set the applicable engine BLEED switch to OFF.
 - (a) Make sure that the applicable duct pressure pointer decreases to less than 10 psi (69 kPa).
- (18) Set the applicable engine BLEED switch to ON.
 - (a) Make sure the applicable duct pressure pointer increases to 10 psi (69 kPa) 25 psi (172 kPa).

NOTE: The duct pressure pointers on the Dual Duct Pressure Indicator, N12 may fluctuate without any user systems in operation.

- (19) Stop the engine operation. This is the task: Stop the Engine Procedure (Usual Engine Stop), AMM TASK 71-00-00-700-819-F00.
- (20) Set the ISOLATION VALVE switch on the P5-10 Panel to the AUTO position.
- (21) Remove the pressure from the pneumatic system. This is the task: Remove Pressure from the Pneumatic System, AMM TASK 36-00-00-860-806.

F. Fault Isolation Procedure

- (1) Make sure that there is no pressure in the Pneumatic System:
 - (a) Do this task: Remove Pressure from the Pneumatic System, AMM TASK 36-00-00-860-806.
 - (b) Make sure that the applicable engine BLEED Switch is set to OFF.
- (2) Make sure that the Fuel Shutoff Lever for the applicable engine is in the CUTOFF position.
 - (a) Install DO-NOT-OPERATE tags.

DO THESE SPECIFIED TASKS IN THE CORRECT SEQUENCE BEFORE YOU OPEN THE THRUST REVERSER: RETRACT THE LEADING EDGE, DO THE DEACTIVATION OF THE LEADING EDGE AND THE THRUST REVERSER (FOR GROUND MAINTENANCE), AND OPEN THE FAN COWL PANELS. IF YOU DO NOT OBEY THE ABOVE SEQUENCE, INJURIES TO PERSONS AND DAMAGE TO EQUIPMENT CAN OCCUR.

- (3) Retract the leading edge flaps and slats if not previously accomplished. This is the task: Leading Edge Flaps and Slats Retraction, AMM TASK 27-81-00-860-804.
- (4) Deactivate the leading edge flaps and slats. This is the task: Leading Edge Flaps and Slats Deactivation, AMM TASK 27-81-00-040-801.
- (5) Deactivate the applicable thrust reverser. This is the task: Thrust Reverser Deactivation For Ground Maintenance, AMM TASK 78-31-00-040-802-F00.
- (6) Open the applicable thrust reverser. This is the task: Open the Thrust Reverser (Selection), AMM TASK 78-31-00-010-801-F00.

- EFFECTIVITY

SIA ALL

36-10 TASK 804

Page 244 Jun 15/2023

D633A103-SIA

- (7) Look at the position indicator/manual override nut on the PCCV to make sure that it is in the OPEN position. Use a dental mirror, STD-3907 if necessary.
 - (a) Use a 3/4-inch wrench on the manual override nut to close the PCCV to make sure it moves smoothly.
 - (b) Remove the wrench and allow the valve to return to the OPEN position by spring force only.
 - (c) If the PCCV does not close smoothly or return to the OPEN position, replace the PCCV. These are the tasks:
 - Precooler Control Valve Removal, AMM TASK 36-12-02-000-801
 - Precooler Control Valve Installation, AMM TASK 36-12-02-400-801
- (8) Do this inspection of the precooler "kiss" seal:
 - (a) Examine the precooler "kiss" seal for any of these conditions:
 - 1) Improper seating
 - 2) Distortion that can block air flow
 - 3) Any damage that would cause the fan air flow to bypass the precooler.
 - (b) If the inspection finds any of the above conditions, then replace the "Kiss" Seal as follows:
 - 1) These are the tasks:
 - Precooler Control Valve Removal, AMM TASK 36-12-02-000-801
 - Precooler Control Valve Installation, AMM TASK 36-12-02-400-801

<u>NOTE</u>: The steps to replace the "Kiss" Seal are part of the PCCV removal and installation procedure.

- 2) If you replace the "Kiss" Seal, examine the face of the Precooler for contamination and FOD damage.
 - Replace the Precooler if contamination or damage is found. These are the tasks:
 - Bleed Air Precooler Removal, AMM TASK 36-12-01-000-801
 - Bleed Air Precooler Installation, AMM TASK 36-12-01-400-802
- (c) If the inspection does not find any of the conditions listed above, then continue.
- (9) Do this task: Bleed Air Check Valve Inspection, AMM TASK 36-11-02-200-801.
 - (a) If you find a problem during the inspection, then do the corrective action shown in the inspection procedure.
 - 1) Do the repair confirmation at the end of this task.
 - (b) If you don't find a problem during the inspection, then install the bleed air check valve and continue.
 - 1) This is the task: Bleed Air Check Valve Installation, AMM TASK 36-11-02-400-801.
- (10) Look at the position indicator/manual override nut on the PRSOV to make sure that it is in the CLOSED position.
 - (a) Use a 3/8-inch wrench on the manual override nut to open the PRSOV to make sure it moves smoothly.
 - (b) Remove the wrench and allow the valve to return to the CLOSED position by spring force only.

SIA ALL

- (c) If the PRSOV does not open smoothly or return to the CLOSED position, replace the PRSOV. These are the tasks:
 - PRSOV Removal, AMM TASK 36-11-04-000-801
 - PRSOV Installation, AMM TASK 36-11-04-400-801
- (11) Look at the position indicator/manual override nut on the HSV to make sure that it is in the CLOSED position.
 - (a) Use a 3/8-inch wrench on the manual override nut to open the HSV to make sure it moves smoothly.
 - (b) Remove the wrench and allow the valve to return to the CLOSED position by spring force only.
 - (c) If the HSV does not open smoothly or return to the CLOSED position, replace the HSV. These are the tasks:
 - High Stage Valve Removal, AMM TASK 36-11-06-000-801
 - High Stage Valve Installation, AMM TASK 36-11-06-400-801
- (12) Use the APU to pressurize the Bleed Air System. This is the task: Supply Pressure to the Pneumatic System with the APU, AMM TASK 36-00-00-860-803.

NOTE: The PRSOV should be closed when pressurizing the Bleed Air System.

(13) Put the BLEED Switch in the ON position.

USE A RATCHET-TYPE WRENCH TO OPEN THE PRSOV. PRESSURE IN THE SYSTEM CAN CAUSE THE PRSOV TO OPEN QUICKLY. THIS CAN PULL THE WRENCH FROM YOUR HANDS. INJURIES TO PERSONNEL, AND DAMAGE TO EQUIPMENT CAN OCCUR.

- (14) Use a 3/8-inch socket on a ratcheted-type wrench to turn the manual override nut on the PRSOV. Once you begin turning the manual override nut, the air pressure should move the PRSOV to the fully OPEN position.
- (15) Disconnect the Supply Pressure Sense Line from the HSR.
- (16) Do a check for air leakage at the Supply Pressure Inlet on the HSR.

NOTE: Air leaking from the Supply Pressure Inlet when the Bleed Air System is pressurized with the APU indicates the reverse flow diaphragm inside the HSR is damaged.

SIA ALL

REMOVE THE PRESSURE FROM THE PNEUMATIC DUCTS BEFORE YOU REMOVE A PNEUMATIC SYSTEM COMPONENT. HOT HIGH PRESSURE AIR CAN CAUSE INJURIES TO PERSONNEL OR DAMAGE TO EQUIPMENT.

- (17) Replace the HSR if air leakage is detected from the Supply Pressure Inlet. These are the tasks:
 - High Stage Regulator Removal, AMM TASK 36-11-07-000-801
 - High Stage Regulator Installation, AMM TASK 36-11-07-400-801
- (18) Do the repair confirmation at the end of this task.
- (19) Do a check of the Supply and Control Pressure Sense Lines:
 - (a) Do this task: Supply Pressure Upstream of the PRSOV, AMM TASK 36-00-00-860-805.

(b) Do a leak check with a soap solution on the entire length of the flexible and rigid lines and fittings of these pneumatic sense lines:

NOTE: Only leakage in the sense lines listed below will cause the low duct pressure condition.

- 1) Supply Pressure Sense Line to the Bleed Air Regulator, M1180.
- 2) Control Pressure Sense Line from the BAR to the PRSOV.
- 3) Control Pressure Sense Line from the PRSOV to the 450° F Thermostat.

NOTE: A small leak at the top of the 450° F Thermostat is acceptable. Leakage found at the sense lines or sense line fittings must be repaired.

- (c) If you find leakage in the sense lines or fittings, do these steps:
 - 1) Repair the sense line or, if necessary, replace the sense line.
 - a) Use Never-Seez Pure Nickel Special anti-seize compound (or equivalent) when you reconnect the sense lines.
 - 2) Do the Repair Confirmation at the end of this task.
- (d) If you do not find any leakage in the sense lines or fittings, then continue.
- (20) Look at the position indicator on the PCCV:
 - (a) If the PCCV is not within 30 degrees from the fully closed position, examine these areas for leakage:

NOTE: If the PCCV is not within 30 degrees from the fully closed position, it may be due to a faulty 390° F PCCV Sensor or a leak in the sense line between the PCCV and the 390° F PCCV Sensor which should be isolated and corrected. However, if the PCCV moves to the fully open position in the next step, then the PCCV should be modulating to open and this condition will not result in low duct pressure unless the PCCV Sensor is failed in the closed position. There is no way to do a check of the 390° F PCCV Sensor on the aircraft. Keep this in mind if you do not find any failed components or if you still get a low duct pressure condition during the Repair Confirmation.

- 1) Sense line and fittings to the PCCV.
- 2) Sense line and fittings between the PCCV and the PCCV Sensor.
- 3) PCCV Sensor.
- (b) If leakage is detected, repair lines and connections as necessary:
 - Use Never-Seez Pure Nickel Special anti-seize compound (or equivalent) when you reconnect lines.
- (c) If leakage is not found, replace the PCCV as follows:
 - 1) Do this task: Precooler Control Valve Removal, AMM TASK 36-12-02-000-801.
 - 2) Make sure there is no debris at the Precooler Inlet.
 - 3) Do this task: Precooler Control Valve Installation, AMM TASK 36-12-02-400-801.
- (d) If the PCCV is within 30 degrees of being fully closed, then continue.
- (21) Do these steps to simulate the opening of the PCCV Sensor:

36-10 TASK 804

EFFECTIVITY

SIA ALL

USE THERMAL PROTECTIVE EQUIPMENT WHEN YOU REMOVE THE CAP ON THE TEST PORT. HOT STRONG PRESSURE AIR CAN RELEASE. IF YOU DO NOT OBEY INSTRUCTIONS, INJURIES TO PERSONNEL CAN OCCUR.

- (a) Slowly remove the cap from the test fitting in the PCCV Control Pressure Sense Line. (36-10 TASK SUPPORT Figure 308), View G.
 - NOTE: This simulates the opening of the PCCV Sensor.
- (b) Make sure that the PCCV opens fully.
 - 1) If the PCCV does not open fully, then replace the PCCV:
 - a) Do this task: Precooler Control Valve Removal, AMM TASK 36-12-02-000-801.
 - b) Make sure that there is no debris at the Precooler Inlet.
 - Do this task: Precooler Control Valve Installation, AMM TASK 36-12-02-400-801.
 - If the PCCV opens fully, then continue.
- (22) Set the applicable engine BLEED switch to OFF.
- (23) Set the APU BLEED switch to OFF.
- (24) Make sure that the PRSOV closes.
- (25) Consider the results of the fault isolation at this point and take the appropriate action listed below:
 - (a) If you have isolated and replaced any faulty components, then do the Repair Confirmation at the end of the task.
 - (b) If you have not found any faults or if you have found and corrected faults that may not necessarily cause a low duct pressure condition, then continue.
 - NOTE: Additional test equipment is required in the subsequent procedures.
- (26) Install this test equipment to the pressure supply side of the applicable BAR:
 - NOTE: The test equipment used in this and subsequent steps is part of P/N C36001-44 Engine Bleed Air System Test Equipment listed in the 737 Illustrated Tool and Equipment List (ITEL). Test equipment equivalent to the equipment in the P/N C36001-44 may be used.
 - (a) Connect a Nitrogen Pressure Source, a Pressure Regulator, a Supply Pressure Gage (Ps), and a Supply Pressure Test Hose at the tee to the supply pressure sense line to the BAR (36-10 TASK SUPPORT Figure 308, View A).
- (27) Install test equipment to the control pressure side of the BAR. (36-10 TASK SUPPORT Figure 308):
 - (a) Disconnect the Control Pressure Sense Line from the PRSOV and install a Control Pressure Gage (Pc) between the flex line and the PRSOV (36-10 TASK SUPPORT Figure 308, View B).
 - 1) If you use a pressure gage equivalent to the gage specified in P/N C36001-44, make sure that the indication increments are no greater than 0.2 psi (1.4 kPa) and that the gage accuracy is +/- 0.5% full scale.
- (28) Do this check of the BAR Circuit:
 - (a) Put the applicable BLEED switch on the P5-10 panel to the ON position.

SIA ALL 36-10 TASK 804

- (b) Adjust the regulator on the nitrogen pressure source, STD-1455 to provide 230-250 psi (16-17 Bar or 1600-1700 kPa) to the pressure regulator, STD-1454.
- (c) Increase Ps to 70 psig (483 kPa) 75 psig (517 kPa).
- (d) Make sure that the PRSOV is fully open.
 - NOTE: Sense line leakage or low control pressure (Pc) could prevent the PRSOV from being fully open.
- (e) If Pc is greater than 28 psig (193 kPa), then replace the Bleed Air Regulator, M1180:
 - These are the tasks:
 - Bleed Air Regulator Removal, AMM TASK 36-11-03-000-801
 - Bleed Air Regulator Installation, AMM TASK 36-11-03-400-801
 - 2) Continue with this procedure as this will not cause a low duct pressure condition.
- (f) If Pc is less than 20 psig (138 kPa), then use a soap solution to examine the sense line and fittings from the Bleed Air Regulator, M1180 to the PRSOV and the sense line and fittings from the PRSOV to 450° F Thermostat for pressure leakage.
 - NOTE: A small leak at the top of the 450° F Thermostat is acceptable. The 450° F Thermostat will be isolated in subsequent steps. Leakage detected at the sense line connections must be repaired.
 - 1) If you find any leakage, decrease Ps to 0 psig.
 - 2) Repair the sense line to stop the leakage:
 - a) Use Never-Seez Pure Nickel Special anti-seize compound (or equivalent) when you reconnect sense lines.
 - b) Increase Ps to 70 psig (483 kPa) 75 psig (517 kPa) and make sure that the repaired sense line or fittings do not leak.
 - 3) If you do not find any leakage, then continue.
 - a) Disconnect the Control Pressure Sense Line to the 450° F Thermostat and install a cap (36-10 TASK SUPPORT Figure 308, View C).
 - NOTE: This removes the 450° F Thermostat as a source of pressure leakage.
 - 4) Increase Ps to 70 psig (483 kPa) 75 psig (517 kPa).
 - a) If Pc is between 20 psig (138 kPa) 28 psig (193 kPa), then do these steps:
 - NOTE: These steps are a continuation of the check of the BAR circuit from the previous step.
 - <1> Decrease Ps to 0 psig.
 - <2> Replace the 450° F Thermostat. These are the tasks:
 - Thermostat Removal, AMM TASK 36-11-05-000-801
 - Thermostat Installation, AMM TASK 36-11-05-400-801
 - <a> Do the Repair Confirmation at the end of this task.
 - b) If Pc is not between 20 psig (138 kPa) 28 psig (193 kPa), then do these steps:
 - <1> Decrease Ps to 0 psig.
 - <2> Remove the cap from the Control Pressure Sense Line to the 450° F Thermostat.
 - <3> Reconnect the Control Pressure Sense Lines:

36-10 TASK 804

EFFECTIVITY

SIA ALL

- <a> Use Never-Seez Pure Nickel Special anti-seize compound (or equivalent) when you reconnect sense lines.
- <4> Disconnect the Control Pressure Gage connection from the PRSOV.
- <5> Install a cap on the open end of the Control Pressure (Pc) Gauge connection. (36-10 TASK SUPPORT Figure 308, View D).
- <6> Increase Ps to 70 psig (483 kPa) 75 psig (517 kPa).
- <7> Make sure that Pc is 20 psig (138 kPa) 28 psig (193 kPa).
- <8> If Pc is not between 20 psig (138 kPa) 28 psig (193 kPa), then do these steps:
 - <a> Decrease Ps to 0 psig.
 -

 Replace the BAR. These are the tasks:
 - Bleed Air Regulator Removal, AMM TASK 36-11-03-000-801
 - Bleed Air Regulator Installation, AMM TASK 36-11-03-400-801
 - <c> Do the Repair Confirmation at the end of this task.
- <9> If Pc is between 20 psig (138 kPa) 28 psig (193 kPa), then do these steps:
 - <a> Decrease Ps to 0 psig.
 -

 Replace the PRSOV. These are the tasks:
 - PRSOV Removal, AMM TASK 36-11-04-000-801
 - PRSOV Installation, AMM TASK 36-11-04-400-801
 - <c> Do the Repair Confirmation at the end of this task.
- <10> Increase Ps to 70 psig (483 kPa) 75 psig (517 kPa).
- <11> If Pc is between 20 psig (138 kPa) 28 psig (193 kPa), then do these steps:
 - <a> Decrease Ps to 0 psig.
 - Remove all the pressure gages, associated test equipment, and hardware that was installed.
 - <c> Re-connect all sense lines that were disconnected using Never-Seez Pure Nickel Special anti-seize compound (or equivalent).
 - <d> Do the Repair Confirmation at the end of this task.
- (g) If Pc is 20 psi (138 kPa) 28 psi (193 kPa), then continue.
- (29) Do this check of the Control Pressure Sense Line from the HSR to the HSV:
 - (a) Disconnect the Supply Pressure Sense Line at the ninth stage duct (36-10 TASK SUPPORT Figure 308, View F).
 - (b) Connect a Pressure Regulator, Supply Pressure Gage (Ps), and a nitrogen pressure source to the removed supply pressure line (36-10 TASK SUPPORT Figure 308, View F).
 - (c) Adjust the Regulator on the nitrogen pressure source, STD-1455 to provide 230-250 psi (16-17 Bar or 1600-1700 kPa) to the pressure regulator, STD-1454.
 - (d) Slowly increase Ps to 70 psig (483 kPa) 75 psig (517 kPa).
 - (e) Examine the Control Pressure Sense Line and fittings from the HSR to the HSV for pressure leakage.

SIA ALL

- (f) If any leakage is detected, then do these steps:
 - 1) Decrease Ps to 0 psig.
 - 2) Repair the sense line as required.
 - a) Use Never-Seez Pure Nickel Special anti-seize compound (or equivalent) when you reconnect sense lines.
 - 3) Do the Repair Confirmation at the end of this task.
- (g) If no leakage is detected, decrease Ps to 0 psig.
- (h) Continue.
- (30) Do this check of the HSR and HSV for correct operation:
 - (a) Disconnect the Control Pressure Sense Line at the HSV (36-10 TASK SUPPORT Figure 308), View F).
 - (b) Install a 30 psi Control Pressure Gage (Pc) between the Control Pressure Sense Line and the HSV (36-10 TASK SUPPORT Figure 308, View F).
 - 1) If you use a pressure gage that is equivalent to the one specified in the P/N C36001-44 test set, make sure that the pressure indication increments are no greater than 0.2 psi (1.4 kPa) and that the gage accuracy is ± 0.5% full scale.
 - (c) Increase Ps to 35 psi (241 kPa) 40 psi (276 kPa) and then back to 0 psig to cycle the valve several times.
 - (d) Slowly increase the supply pressure Ps to the HSR as you monitor the control pressure Pc to the HSV.
 - (e) Make a note of the Ps pressure at which the HSV moves to the fully open position.
 - If the supply pressure Ps was greater than 10 psi (69 kPa) when the HSV opened fully, then replace the HSV:
 - a) These are the tasks:
 - High Stage Valve Removal, AMM TASK 36-11-06-000-801
 - High Stage Valve Installation, AMM TASK 36-11-06-400-801
 - b) Do the Repair Confirmation at the end of this task.
 - If the control pressure was 10 psi (69 kPa) or less when the HSV opened fully, then continue.
 - (f) Continue to increase Ps to 70 psig (483 kPa) 75 psig (517 kPa).
 - (g) Make sure that Pc is more than 14 psig (97 kPa).
 - 1) If Pc is not more than 14 psig (97 kPa), then do these steps:
 - a) Decrease Ps to 0 psig.
 - b) Replace the HSR. These are the tasks:
 - High Stage Regulator Removal, AMM TASK 36-11-07-000-801
 - High Stage Regulator Installation, AMM TASK 36-11-07-400-801
 - c) Do the Repair Confirmation at the end of this task.
 - (h) If no faults are found, then continue.
- (31) Replace the 450° F Thermostat:

NOTE: You cannot do a test of this component on the aircraft.

(a) These are the tasks:

EFFECTIVITY

SIA ALL

- Thermostat Removal, AMM TASK 36-11-05-000-801
- Thermostat Installation, AMM TASK 36-11-05-400-801
- (32) Replace the PCCV Sensor:

NOTE: You cannot do a test of this component on the aircraft.

- (a) These are the tasks:
 - Precooler Control Valve Sensor Removal, AMM TASK 36-12-03-000-801
 - Precooler Control Valve Sensor Installation, AMM TASK 36-12-03-400-801
- (b) Do the Repair Confirmation at the end of this task.
- (33) If you have completed the entire Fault Isolation Procedure and the low duct pressure condition still exists, then replace the Bleed Air Precooler:
 - (a) These are the tasks:
 - Bleed Air Precooler Removal, AMM TASK 36-12-01-000-801
 - Bleed Air Precooler Installation, AMM TASK 36-12-01-400-802
 - (b) Do the Repair Confirmation at the end of this task.

G. Electrical Checks - Fault Isolation

SIA ALL

- (1) Do this check of electrical harness MW0311 between the engine firewall connector DP1104 and the connector DP1102 to the solenoid on the BAR:
 - NOTE: These electrical checks are needed to determine why the circuit breaker that controls the PRSOV trips.
 - NOTE: Harnesses with part numbers 325-029-901-0 or 325-029-902-0 are susceptible to internal shorting which can cause the bleed air valve circuit breaker to trip and prevent the PRSOV from opening. This type of failure is not always a hard fault (always present). Therefore, if you found the applicable circuit breaker tripped or if it has tripped in the past, it is quite possible there is an intermittent short in the harness. A thorough check of the harness must be accomplished to determine if the harness must be replaced.
 - NOTE: A multimeter is required to perform the electrical checks in this procedure. If there is an intermittent short or the fault is not present at any point in the Fault Isolation, you may use a megohmmeter instead of the multimeter to perform a more thorough check of the electrical circuit.
 - (a) Open these circuit breakers and install safety tags:

F/O Electrical System Panel, P6-4

Row	<u>Col</u>	<u>Number</u>	<u>Name</u>
Α	7	C00796	AIR CONDITIONING BLEED AIR VALVES L
В	7	C00797	AIR CONDITIONING BLEED AIR VALVES R

- (b) Disconnect electrical connectors DP1104 and DP1102.
- (c) Do these steps to do a general visual inspection of the airplane wire harness MW0311:
 - 1) Visually examine the airplane wire harness for loose connections, worn areas, deformation and internal damage.
 - 2) If you find loose connections, worn areas, deformation and internal damage, then do these steps:
 - a) Repair the problems that you find.

SEFFECTIVITY 36-10 TASK 804

- b) Do the Repair Confirmation at the end of this task.
- 3) If you do not find loose connections, worn areas, deformation and internal damage, then continue.
- (d) Do the continuity checks on the MW0311 harness as listed below:

DP1104	DP1102
pin 12	pin 7
pin 11	pin 6
pin 3	pin 5
pin 10	pin 10
pin 2	pin 9

- 1) If any of the continuity checks failed, then replace the MW0311 harness:
 - a) These are the tasks:
 - 3 O'clock Strut Harness Removal, AMM TASK 73-21-06-000-802-F00
 - 3 O'clock Strut Harness Installation, AMM TASK 73-21-06-400-802-F00
 - b) Do the Repair Confirmation at the end of this task.
- 2) If the continuity checks are satisfactory, then continue.
- 3) Use a multimeter or megohmmeter to do checks for continuity from the backshell of connector DP1102 to pins 5, 7, and 10 of connector DP1102.
- 4) If any of the electrical checks fail, replace the wiring harness MW0311:
 - a) These are the tasks:
 - 3 O'clock Strut Harness Removal, AMM TASK 73-21-06-000-802-F00
 - 3 O'clock Strut Harness Installation, AMM TASK 73-21-06-400-802-F00
 - b) Do the Repair Confirmation at the end of this task.
- 5) If all of the electrical checks are satisfactory, then continue.
- (e) Connect electrical connector DP1102 to the bleed air regulator.
- (f) Do a check of the resistance between pins 3 and 11 of connector D30204 (D30404).
 - 1) If the resistance is not 20 40 Ω , then replace the MW0311 wiring harness. These are the tasks:
 - 3 O'clock Strut Harness Removal, AMM TASK 73-21-06-000-802-F00
 - 3 O'clock Strut Harness Installation, AMM TASK 73-21-06-400-802-F00
 - 2) If the resistance is 20 40 Ω , then do the Repair Confirmation at the end of the task.

H. DUCT LOW PRESSURE Troubleshooting Table

(1) The following is a quick-reference table for troubleshooting duct low pressure.

DUCT LOW PRESSURE Troubleshooting Table

OPERATING PHASE	RECOMMENDED MAINTENANCE ACTION			
GROUND IDLE/TAXI: LOW PRESSURE OCCURS ONLY DURING				
GROUND IDLE/TAXI				
HSV not full open				

EFFECTIVITY SIA ALL

DUCT LOW PRESSURE Troubleshooting Table (Continued)

OPERATING PHASE	RECOMMENDED MAINTENANCE ACTION		
HSR reverse flow mechanism.	Do a check of the reverse flow mechanism (FIM 36-10 TASK 804 Steps F(11) and F(12)).		
HSR Control Pressure Sense Line leakage and HSV operation.	Do the check of the HSV operation (FIM 36-10 TASK 804 Step F(31)).		
	CURS ONLY DURING TAKEOFF ROLL E LOW PRESSURE DURING TAKEOFF)		
Low pressure regulation: on	e or a combination of the following		
BAR control pressure (Pc) low.	Do a check on the BAR control pressure (FIM 36-10 TASK 804 Step F(29)).		
PRSOV opening piston leakage and sense line leakage.	Do a leakage check (FIM 36-10 TASK 804, Steps F(27) and F(28)).		
Temperature greater than 450° F	: one or a combination of the following		
PCCV not open.	Examine PCCV opens when Pc is less than 3 psi (21 kPa). (FIM 36-10 TASK 801, Steps F(3), F(11), and F(12).)		
390° F Sensor does not open.	If PCCV opens, replace the 390° F sensor.		
	Precooler Control Valve Sensor Removal, AMM TASK 36-12-03-000-801		
	Precooler Control Valve Sensor Installation, AMM TASK 36-12-03-400-801		
HSV has excessive internal leakage.	Examine the internal butterfly clearance (FIM 36-10 TASK 801 Step F(2)(c)).		
CLIMB: LOW PRESSURE	OCCURS ONLY DURING CLIMB		
Low pressure regulation: on	e or a combination of the following		
BAR control pressure (Pc) low.	Do a check on the BAR control pressure (FIM 36-10 TASK 80 Step F(29)).		
PRSOV Opening Piston leakage and Sense Line leakage.	Do the leakage check (FIM 36-10 TASK 804, Steps F(27) and F(28)).		
Temperature greater than 450° F	: one or a combination of the following		
PCCV not open.	Examine that PCCV opens when Pc is less than 3 psi (21 kPa (FIM 36-10 TASK 801, Steps F(3), F(11), and F(12).		
390° F Sensor does not open.	If PCCV opens, replace 390° F Sensor.		
	Precooler Control Valve Sensor Removal, AMM TASK 36-12-03-000-801		
	Precooler Control Valve Sensor Installation, AMM TASK 36-12-03-400-801		
HSV has excessive internal leakage.	Examine the internal butterfly clearance (FIM 36-10 TASK 801 Step F(2)(c)).		
CRUISE: LOW PRESSURE OCCURS ONLY DURING CRUISE			
Low pressure regulation: on	e or a combination of the following		

SIA ALL

DUCT LOW PRESSURE Troubleshooting Table (Continued)

OPERATING PHASE	RECOMMENDED MAINTENANCE ACTION			
BAR control pressure (Pc) low.	Do a check on the BAR control pressure (FIM 36-10 TASK 804 Step F(29)).			
PRSOV Opening Piston leakage and Sense Line leakage.	Do a check for leakage (FIM 36-10 TASK 804, Steps F(27) and F(28)).			
False high downstream pressure to PRSOV				
HSR reverse flow mechanism: ruptured diaphragm ports high stage supply pressure into the PRSOV downstream sense line.	Examine for diaphragm rupture (FIM 36-10 TASK 804, Steps F(15) and F(16)).			
DECENT: LOW PRESSURE OCCURS ONLY DURING DESCENT				
High Stage Valve not full open				
HSR reverse flow mechanism.	Examine reverse flow mechanism (FIM 36-10 TASK 804, Steps F(11) and F(12)).			

I. Repair Confirmation

- (1) Remove all pressure gages, associated test equipment, and hardware.
- (2) Re-connect all sense lines that were disconnected.
 - (a) Use Never-Seez Pure Nickel Special anti-seize compound (or equivalent) when you reconnect the sense lines.

OBEY THE INSTRUCTIONS IN THE PROCEDURE TO CLOSE THE THRUST REVERSERS. IF YOU DO NOT OBEY THE INSTRUCTIONS, INJURIES TO PERSONS AND DAMAGE TO EQUIPMENT CAN OCCUR.

- (3) For the applicable Thrust Reverser, do this task: Close the Thrust Reverser (Selection), AMM TASK 78-31-00-010-804-F00.
- (4) Reactivate the applicable Thrust Reverser. This is the task: Thrust Reverser Activation After Ground Maintenance, AMM TASK 78-31-00-440-803-F00.
- (5) Close the Fan Cowl Panels. This is the task: Close the Fan Cowl Panels, AMM TASK 71-11-02-410-801-F00.
- (6) Reactivate the Leading Edge Flaps and Slats. This is the task: Leading Edge Flaps and Slats -Activation, AMM TASK 27-81-00-440-801.
- (7) The following is an Engine Bleed System Troubleshooting Table. Print out the table and use it as a quick reference troubleshooting guide when working on the bleed system of an airplane.

Engine Bleed System Troubleshooting Table

STEP	TASK REFERENCE	TROUBLESHOOTING STEP	EXPECTATION NORMAL OPERATION	REMEDY FOR ABNORMAL OPERATION	OBSERVATION
1	AMM TASK 24-22-	Open the thrust			
	00-860-811,	reverser.			
	AMM TASK 78-31-				
	00-010-801-F00				

SIA ALL

36-10 TASK 804

Page 255 Jun 15/2023

Engine Bleed System Troubleshooting Table (Continued)

					1
STEP	TASK REFERENCE	TROUBLESHOOTING STEP	EXPECTATION NORMAL OPERATION	REMEDY FOR ABNORMAL OPERATION	OBSERVATION
2.A	FIM 36-10-804, Step F.(10)	Look at the position indicator on the HSV.	Should be CLOSED.		
2.B	FIM 36-10-804, Step F.(10)(a)	Manually wrench OPEN the HSV and allow it to move CLOSED by spring force only.	Should move smoothly to the OPEN position and return to the CLOSED position by spring force only.	If the valve does not move smoothly and return to CLOSED, replace per: AMM TASK 36-11-06- 000-801, AMM TASK 36-11-06- 400-801	
3.A	FIM 36-10-804, Step F.(9)	Look at the position indicator on the PRSOV.	Should be CLOSED.		
3.B	FIM 36-10-804, Step F.(9)(a)	Manually wrench OPEN the PRSOV and allow it to move CLOSED by spring force only.	Should move smoothly to the OPEN position and return to the CLOSED position by spring force only.	If the valve does not move smoothly and return to CLOSED, replace per: AMM TASK 36-11-04- 000-801, AMM TASK 36-11-04- 400-801	
4.A	AMM TASK 36-11- 00-700-802 Para 6.F.(7)(a), FIM 36-10-804, F.(7)	Look at the position indicator on the PCCV.	Should be open.		
4.B	AMM TASK 36-11- 00-700-802 Para 6.F.(7)(a), FIM 36-10-804, F.(7)(a)	Manually wrench CLOSED the PCCV and allow it to move OPEN by spring force only.	Should move smoothly to the CLOSED position and return to the OPEN position by spring force only.	If the valve does not move smoothly and return to CLOSED, replace per: AMM TASK 36-12-02- 000-801, AMM TASK 36-12-02- 400-801	
5.A	AMM TASK 36-11- 00-700-802 Para 6.G.(1)(a), FIM 36-10-804, F.(11)	Supply pneumatic pressure from the APU or ground supply (pressure should be less than 40 psig (276 kPa)).			

SIA ALL

36-10 TASK 804

Page 256 Jun 15/2023

Engine Bleed System Troubleshooting Table (Continued)

				, ,	
STEP	TASK REFERENCE	TROUBLESHOOTING STEP	EXPECTATION NORMAL OPERATION	REMEDY FOR ABNORMAL OPERATION	OBSERVATION
5.B	AMM TASK 36-11- 00-700-802 Para 6.G.(8), FIM 36-10-804, F.(15)	Disconnect the supply line connection from the HSR port.	No air should flow from the supply port.	If air flows from the supply port, the Reverse Flow Diaphragm is ruptured. Replace the HSR per: AMM TASK 36-11-07-000-801 AMM TASK 36-11-07-400-801	
5.C	AMM TASK 36-11- 00-700-802 Para 6.G.(3), FIM 36-10-804, Step F.(13)	Manually OPEN the PRSOV with a wrench if it does not OPEN when the APU bleed is selected ON. WARNING: Use a ratchet-type wrench when opening the PRSOV to avoid injury.	PRSOV will move to and stay in the FULL OPEN position. Low control pressure from the BAR or leaking control pressure lines can result in low duct pressure when the PRSOV is regulating the pneumatic pressure. Check for leaking relief valve on the BAR, leaking flex line to the PRSOV, leaking control pressure line from the PRSOV to the 450° F Sensor, excessive venting of the 450° F Sensor.	Check for leaks on: 1. the supply and control pressure lines. 2. relief valve on the regulator. If the relief valve is leaking, replace the BAR per: AMM TASK 36-11-03-000-801 AMM TASK 36-11-03-400-801	
5.D	AMM TASK 36-11- 00-700-802 Para 6.G.(4), FIM 36-10-804, Step F.(20)	When the PRSOV moves OPEN, the PCCV should move CLOSED.	PCCV moves to the CLOSED position.	If the valve does not move CLOSED, check for leaks on the supply and control pressure lines. If no leaks are found, replace the PCCV per: AMM TASK 36-12-02-000-801 AMM TASK 36-12-02-400-801	

SIA ALL

36-10 TASK 804

Page 257 Jun 15/2023

Engine Bleed System Troubleshooting Table (Continued)

STEP	TASK REFERENCE	TROUBLESHOOTING STEP	EXPECTATION NORMAL OPERATION	REMEDY FOR ABNORMAL OPERATION	OBSERVATION
5.E	AMM TASK 36-11- 00-700-802 Para 6.G.(5), FIM 36-10-804, Step F.(21)(a)	Disconnect the test cap on the PCCV control pressure line.	The PCCV should move to the OPEN position.	If the valve does not move OPEN, check for blockage in the sense line.	
6.A	AMM TASK 36-11- 00-700-802 Para 6.H.(1)-(3)	Return Pneumatic System to normal configuration.			
6.B	AMM TASK 36-11- 00-700-802 Para 6.H.(4),(5)	Return airplane to normal configuration.			

END	OE	TASK	
	UL	IASN	

805. Duct Pressure Zero, the Engine is the Bleed Source - Fault Isolation

A. Description

- (1) (SDS SUBJECT 36-11-00, SDS SUBJECT 36-12-00)
- (2) A zero duct pressure condition is a condition in which one or both pointers on the dual duct pressure indicator is at 0 psi with the engine(s) as the bleed source.

B. Possible Causes

- (1) Pressure regulator and shutoff valve (PRSOV)
 - (a) Failure Mode: stuck or locked closed
- (2) Bleed air regulator, M1180
 - (a) Failure Mode: No or low control pressure, open or shorted solenoid
- (3) Tripped circuit breaker
- (4) Pneumatic sense lines (supply or control)
 - (a) Failure Mode: leakage or blockage
- (5) Wiring

· EFFECTIVITY

SIA ALL

- (a) Failure Mode: open or shorted
- (b) MW0311 Engine Wiring Harness
 - NOTE: MW0311 electrical harnesses P/N 325-029-901-0 and 325-029-902-0 are known to be the source of faults. These electrical harnesses can be reworked to serviceable units with the incorporation of CFM International Service Bulletin 72-0262.
 - 1) Failure Mode: Possible wire shorting on backshell of connector DP1102
 - 2) Failure Mode: Possible broken wires inside connector DP1102
- (6) Precooler control valve
 - (a) Failure Mode: leaking diaphragm that causes insufficient supply pressure to the bleed air regulator
- (7) Duct pressure transducer, T405 (Left) or T403 (Right)

36-10 TASKS 804-805

Page 258 Jun 15/2023

- (a) Failure Mode: Out of tolerance or totally failed
- (8) Dual duct pressure indicator, N12
 - (a) Failure Mode: Out of tolerance or totally failed
- (9) Bleed air check valve (Stage 5)
 - (a) Failure Mode: Valve stuck closed.
 - (b) A stuck closed 5th stage Bleed Air Check Valve can result in zero duct pressure or very low pressure when the system switches over from 9th stage to 5th stage bleed air at approximately 60% N1 at sea level.

C. Circuit Breakers

(1) These are the primary circuit breakers related to the fault:

F/O Electrical System Panel, P6-4

Row	<u>Col</u>	<u>Number</u>	<u>Name</u>
Α	5	C00259	AIR CONDITIONING BLEED AIR VALVE ISLN
Α	6	C01470	AIR CONDITIONING BLEED AIR XDCR LEFT
Α	7	C00796	AIR CONDITIONING BLEED AIR VALVES L
В	5	C00077	AIR CONDITIONING BLEED AIR PRESS IND
В	6	C01469	AIR CONDITIONING BLEED AIR XDCR RIGHT
В	7	C00797	AIR CONDITIONING BLEED AIR VALVES R

D. Related Data

- (1) Component Location (36-10 TASK SUPPORT Figure 301)
- (2) Component Location (36-10 TASK SUPPORT Figure 302)
- (3) Troubleshooting Check (36-10 TASK SUPPORT Figure 309)
- (4) Pneumatic System Control Valve Position Indicators (36-10 TASK SUPPORT Figure 311)
- (5) (SSM 36-11-11)
- (6) (WDM 36-21-11)

E. Initial Evaluation

- (1) Do a check to see if any of these circuit breakers have tripped:
 - (a) These are the circuit breakers:

F/O Electrical System Panel, P6-4

Row	<u>Col</u>	Number	<u>Name</u>
Α	6	C01470	AIR CONDITIONING BLEED AIR XDCR LEFT
В	5	C00077	AIR CONDITIONING BLEED AIR PRESS IND
В	6	C01469	AIR CONDITIONING BLEED AIR XDCR RIGHT

DO NOT HOLD THE CIRCUIT BREAKER IN THE RESET POSITION. IF YOU HOLD THE CIRCUIT BREAKER IN THE RESET POSITION WHEN A WIRING FAULT IS PRESENT, THE CIRCUIT BREAKER WILL NOT BE ABLE TO TRIP AGAIN. FAILURE TO RESET AND RELEASE THE CIRCUIT BREAKER QUICKLY CAN RESULT IN A FIRE, EXTENSIVE DAMAGE TO WIRING, AND INJURY TO PERSONS.

- (b) If any of the circuit breakers are tripped, reset the circuit breaker(s).
- (c) If the circuit breaker trips again, then do these checks of the indication circuit:

EFFECTIVITY SIA ALL

- 1) Fault isolate and repair the short in the wiring or faulty component.
- 2) Do a check of the wiring between the power supply, the dual duct pressure indicator, and the transducers (WDM 36-21-11).
- 3) Repair any problems that you find.
- 4) Do the Repair Confirmation at the end of this task.
- (d) If the circuit breaker(s) was successfully reset or if none of the circuit breakers has tripped, then continue.
- (2) Do a check to see if any of these circuit breakers have tripped:
 - (a) These are the circuit breakers:

F/O Electrical System Panel, P6-4

Row	Col	<u>Number</u>	<u>Name</u>
Α	7	C00796	AIR CONDITIONING BLEED AIR VALVES L
В	7	C00797	AIR CONDITIONING BLEED AIR VALVES R

DO NOT HOLD THE CIRCUIT BREAKER IN THE RESET POSITION. IF YOU HOLD THE CIRCUIT BREAKER IN THE RESET POSITION WHEN A WIRING FAULT IS PRESENT, THE CIRCUIT BREAKER WILL NOT BE ABLE TO TRIP AGAIN. FAILURE TO RESET AND RELEASE THE CIRCUIT BREAKER QUICKLY CAN RESULT IN A FIRE, EXTENSIVE DAMAGE TO WIRING, AND INJURY TO PERSONS.

- (b) If the circuit breaker(s) for the applicable engine bleed air valve(s) has tripped, reset the circuit breaker(s).
- (c) If the circuit breaker trips again, then proceed to the Electrical Checks Fault Isolation Procedure.
- (d) If the circuit breaker(s) was successfully reset or if none of the circuit breakers has tripped, then continue.
- (3) Make sure that there is no pressure in the pneumatic systems and make these observations:
 - (a) Make sure that both L and R pressure pointers on the dual duct pressure indicator indicate 0 (+/-2) psi.
 - (b) Make sure that the left and right pressure indications are not different more than 3 psi.
 - (c) If one or both pressure pointers do not indicate 0 (+/-2) psi or if the pointer indications are split more than 3 psi, do these steps:
 - 1) Fault isolate the duct pressure indication fault as follows:
 - Do this task: Duct pressure, L and R pointers not the same (split) the APU is the bleed source - Fault Isolation, 36-10 TASK 808.
 - Continue with this Initial Evaluation procedure.
 - (d) If both the left and right pressure indications are within limits, then continue.
- (4) Supply pressure to the pneumatic system with the APU or a ground pneumatic source. To supply pressure, do this task: Supply Pressure to the Pneumatic System (Selection), AMM TASK 36-00-00-860-801.
- (5) Set the ISOLATION VALVE switch on the P5-10 panel to the OPEN position.
- (6) Examine the dual duct pressure indicator, N12, on the P5-10 panel:
 - (a) If you pressurized the pneumatic system with the APU, make sure these results occur:

SIA ALL

- The L and R pointers indicate a minimum of 12 psi.
- 2) The L and R pointer indications are within 3 psi of each other.
- 3) If the L and R pressure pointers do not indicate a minimum of 12 psi or if the pointer indications are split more than 3 psi, do these steps:
 - Fault isolate the duct pressure indication fault as follows: Do this task: Duct pressure, L and R pointers not the same (split) the APU is the bleed source -Fault Isolation, 36-10 TASK 808.
 - b) Continue with this Initial Evaluation procedure.
- 4) If both the left and right pressure indications are within limits, then continue.
- (b) If you pressurized the pneumatic systems with a ground pneumatic source, make sure these results occur:
 - 1) The L and R pointers indications are the same as the output pressure indication on the ground source.
 - 2) The L and R pointer indications are within 3 psi of each other.
 - 3) If the pressure pointers do not indicate the same as the pressure indication on the ground source or if the pointer indications are split more than 3 psi, do these steps:
 - Fault isolate the duct pressure indication fault. Do this task: Duct pressure, L and R pointers not the same (split) the APU is the bleed source - Fault Isolation, 36-10 TASK 808
 - b) Continue with this Initial Evaluation procedure.
 - 4) If both the left and right pressure indications are within limits, then continue.
- (c) If both the L and R pressure pointers indicate 0 psi, then do these steps:
 - 1) These are the tasks:
 - Dual Duct Pressure Indicator Removal, AMM TASK 36-21-02-600-801
 - Dual Duct Pressure Indicator Installation, AMM TASK 36-21-02-600-802
 - 2) Do the Initial Evaluation procedure again.
- (d) If one of the pressure pointers indicates 0 psi, then do this step:
 - 1) Do this task: Duct pressure, L and R pointers not the same (split) the APU is the bleed source Fault Isolation, 36-10 TASK 808.
 - 2) Continue with this Initial Evaluation procedure.
- (e) If both of the pressure pointers indicate properly, then continue.
- (7) If you suspect that there is a system fault, you may proceed to the Fault Isolation Procedure to avoid an engine run to confirm the fault or continue.
- (8) Supply pneumatic pressure to the pneumatic systems as follows:
 - (a) Supply pressure to the pneumatic system with the faulty pressure with its respective engine.
 - 1) Do this task: Supply Pressure to the Pneumatic System with One or Both Engines, AMM TASK 36-00-00-860-804.
- (9) Set the ISOLATION VALVE switch on the P5-10 panel to the CLOSED position.
- (10) Set the APU BLEED switch to OFF or remove the external pneumatic source if applicable.
- (11) Examine the dual duct pressure indicator, N12, on the P5-10 panel:

EFFECTIVITY

SIA ALL

- (12) Make sure that the respective duct pressure pointer(s) indicates between 10-25 psi.
 - <u>NOTE</u>: The duct pressure pointers on the dual duct pressure indicator may fluctuate without any user systems in operation.
- (13) If the respective duct pressure pointer(s) indicates between 10 25 psi, then there was an intermittent fault.
 - (a) Use your judgement, airline policy and the history of the aircraft's pneumatic system to determine if you will take further action or monitor the system performance on subsequent flights.
- (14) Do this task: Stop the Engine Procedure (Usual Engine Stop), AMM TASK 71-00-00-700-819-F00.
- (15) Do this task: Remove Pressure from the Pneumatic System, AMM TASK 36-00-00-860-806.
- (16) If one or both duct pressure pointer(s) indicates 0 psi, then do the Fault Isolation Procedure.

F. Fault Isolation Procedure

- NOTE: It is unlikely that both bleed systems have zero duct pressure. However, if this is the case, this procedure must be done on both engines.
- NOTE: At this point in this fault isolation task, you should have confirmed that the duct pressure indication system is not at fault.
- (1) Do these steps to prepare for fault isolation:
 - (a) Do this task: Remove Pressure from the Pneumatic System, AMM TASK 36-00-00-860-806.
 - (b) Make sure that the applicable engine BLEED switch is in the OFF position.
 - (c) Make sure that the fuel shutoff lever for the applicable engine is in the cutoff position.
 - 1) Install a DO-NOT-OPERATE tag.
 - (d) Retract the Leading Edge Flaps and Slats. To do this, do this task: Leading Edge Flaps and Slats Retraction, AMM TASK 27-81-00-860-804.
 - (e) Deactivate the Leading Edge Flaps and Slats. Do this task: Leading Edge Flaps and Slats Deactivation, AMM TASK 27-81-00-040-801.
 - (f) Do this task: Thrust Reverser Deactivation For Ground Maintenance, AMM TASK 78-31-00-040-802-F00.
 - (g) Do this task: Open the Thrust Reverser (Selection), AMM TASK 78-31-00-010-801-F00.
- (2) Examine these circuit breakers:

SIA ALL

(a) These are the circuit breakers:

F/O Electrical System Panel, P6-4

Row	<u>Col</u>	<u>Number</u>	<u>Name</u>
Α	7	C00796	AIR CONDITIONING BLEED AIR VALVES L
В	7	C00797	AIR CONDITIONING BLEED AIR VALVES R

- (3) If the circuit breaker applicable to the pneumatic system with the zero duct pressure has tripped, then do the Electrical Checks Fault Isolation.
- (4) If the circuit breaker applicable to the pneumatic system with the zero duct pressure has not tripped, do these steps:
 - (a) Make sure that the locking device on the position indicator of the PRSOV is not engaged with the bracket on the valve.

SEFFECTIVITY 36-10 TASK 805

- If the locking device is engaged, do these steps:
 - a) Unlock the PRSOV.

Do this task: MMEL 36-5 (DDPG) Restoration - Pressure Regulating and Shutoff Valve Inoperative, AMM TASK 36-00-00-440-804

- b) Do the Repair Confirmation procedure at the end of this task.
- 2) If the PRSOV was not locked closed, then continue.
- (5) Do these steps to make sure there is power to the bleed air regulator solenoid:
 - (a) Make sure the applicable engine BLEED switch on the P5-10 panel is set to ON.
 - (b) Open the applicable circuit breaker(s):

F/O Electrical System Panel, P6-4

Row	<u>Col</u>	Number	<u>Name</u>
Α	7	C00796	AIR CONDITIONING BLEED AIR VALVES L
В	7	C00797	AIR CONDITIONING BLEED AIR VALVES R

- (c) Disconnect electrical connector DP1102 from the bleed air regulator.
- (d) Open the housing of electrical connector DP1102 and inspect the wires.
 - 1) Make sure that none of the wires are broken.
 - a) If wires are broken, repair the wires.
 - <1> Do the Repair Confirmation at the end of this task.
 - b) If the wires are not broken, then continue.
- (e) Close the applicable circuit breaker(s):

F/O Electrical System Panel, P6-4

Row	<u>Col</u>	<u>Number</u>	<u>Name</u>
Α	7	C00796	AIR CONDITIONING BLEED AIR VALVES L
В	7	C00797	AIR CONDITIONING BLEED AIR VALVES R

- (f) Do a check for 22 30 VDC between pins 5 and 6 of electrical connector DP1102:
 - 1) If there is 22 30 VDC between pins 5 and 6 of electrical connector DP1102, then do these steps:
 - a) Do a check of the resistance between pins 5 (+) and 6 (-) of the bleed air regulator electrical connector.
 - If the resistance is 20 40 ohms, then proceed to Electrical Check Fault Isolation.
 - c) If the electrical resistance is not 20 40 ohms, then replace the bleed air regulator. These are the tasks:
 - Bleed Air Regulator Removal, AMM TASK 36-11-03-000-801
 - Bleed Air Regulator Installation, AMM TASK 36-11-03-400-801
 - Do the Repair Confirmation at the end of this task.
 - 2) If there is not 22 30 VDC between pins 5 and 6 of electrical connector DP1102, then continue.
- (6) If the circuit breaker applicable to the pneumatic system with the zero duct pressure has not tripped and electrical power to the bleed air regulator solenoid is satisfactory, do a check of the operation of the PRSOV as follows:

SIA ALL

- (a) Use a wrench to open the PRSOV.
 - 1) Make sure the PRSOV opens smoothly.
- (b) Remove the wrench and make sure the PRSOV closes fully.
- (c) If the PRSOV does not smoothly move to the open and closed positions, replace the PRSOV: These are the tasks:
 - PRSOV Removal, AMM TASK 36-11-04-000-801
 - PRSOV Installation, AMM TASK 36-11-04-400-801
- (d) If the PRSOV moves smoothly to the open and closed positions, then continue.
- (7) Install P/N C36001-44 test equipment (or equivalent) to the pressure supply side of the applicable bleed air regulator:
 - NOTE: The test equipment used in this and subsequent steps is part of P/N C36001-44

 Engine Bleed Air System Test Equipment listed in the 737 Illustrated Tool and

 Equipment List (ITEL). Equivalent test equipment to that specified in P/N C36001-44

 can also be used.
 - (a) Connect a nitrogen pressure source, a pressure regulator, a supply pressure gage (Ps), and a supply pressure test hose at the tee to the supply pressure sense line to the bleed air regulator (36-10 TASK SUPPORT Figure 309, View A).
- (8) Install this test equipment to the control pressure side of the bleed air regulator:
 - (a) Disconnect the control pressure sense line from the PRSOV and install a 30 psi control pressure gage (Pc) between the flex line and the PRSOV (36-10 TASK SUPPORT Figure 309, View B).
 - If you use an equivalent control pressure gage to the one specified in P/N C36001-44, make sure that the indication increments are no greater than 0.2 psi and that the gage accuracy is +/- 0.5% full scale.
- (9) Do this check of the bleed air regulator circuit:
 - (a) Put the applicable BLEED switch on the P5-10 panel to the ON position.
 - (b) Adjust the regulator on the nitrogen pressure source, STD-1455 to provide 230–250 psi (16–17 Bar or 1600-1700 kPa) to the pressure regulator, STD-1454.
 - (c) Increase Ps to 60-70 psig.
 - (d) Make sure the PRSOV is fully open.
 - (e) If Pc is greater than 28 psi, then replace the bleed air regulator:
 - 1) These are the tasks:
 - Bleed Air Regulator Removal, AMM TASK 36-11-03-000-801
 - Bleed Air Regulator Installation, AMM TASK 36-11-03-400-801
 - 2) Continue with this procedure as this will not cause a zero duct condition.
 - (f) If Pc is less than 20 psig, then use a soap solution to examine the sense line and fittings from the bleed air regulator to the PRSOV and the sense line and fittings from the PRSOV to 450 F thermostat for pressure leakage.
 - NOTE: A small leak at the top of the 450 F thermostat is acceptable. The 450 F thermostat will be isolated in subsequent steps. Leakage detected at the sense line connections must be repaired.
 - 1) If you find any leakage, decrease Ps to 0 psig.
 - 2) Repair the sense line to stop the leakage:

SIA ALL 36-10 TASK 805

- use Never-Seez Pure Nickel Special anti-seize compound when you reconnect sense lines.
- Increase Ps to 60 70 psig and make sure the repaired sense line and fittings do not leak.
- 3) If you do not find any leakage, then continue.
- 4) Slowly increase Ps to 60 70 psig.
- 5) Make sure that Pc is 20 28 psig.
- 6) If Pc is not between 20 28 psig, do these steps:
 - a) Decrease Ps to 0 psig.
 - Disconnect the control pressure sense line to the 450 F thermostat and install a cap (36-10 TASK SUPPORT Figure 309, View C).

NOTE: This removes the 450° F thermostat as a source of excessive pressure leakage.

- (g) Increase Ps to 60 70 psig.
- (h) Continue.
- (10) If Pc is between 20 28 psig, then do these steps:

NOTE: These steps are a continuation of the check of the bleed air regulator circuit from the previous step.

- (a) Decrease Ps to 0 psig.
- (b) Replace the 450 F thermostat. These are the tasks:
 - Thermostat Removal, AMM TASK 36-11-05-000-801
 - Thermostat Installation, AMM TASK 36-11-05-400-801
 - 1) Do the Repair Confirmation.
- (c) If Pc is not between 20 28 psig, then do these steps:
 - 1) Decrease Ps to 0 psig.
 - 2) Remove the cap and reconnect the control pressure sense lines (36-10 TASK SUPPORT Figure 309, View D).:
 - a) Use Never-Seez NSBT compound, D00006 when you reconnect sense lines.
 - Disconnect the control pressure sense line to gage connection from the PRSOV.
 - Install a cap on the open end of the control pressure (Pc) gage connection (36-10 TASK SUPPORT Figure 309, View D).
 - 5) Increase Ps to 60-70 psig.
 - 6) Make sure that Pc is 20-28 psig.
 - 7) If Pc is not between 20-28 psig, then do these steps:
 - a) Decrease Ps to 0 psig.
 - b) Replace the bleed air regulator. These are the tasks:
 - Bleed Air Regulator Removal, AMM TASK 36-11-03-000-801
 - Bleed Air Regulator Installation, AMM TASK 36-11-03-400-801
 - c) Do the Repair Confirmation.
 - 8) If Pc is between 20 28 psig, then do these steps:
 - a) Decrease Ps to 0 psig.

36-10 TASK 805

EFFECTIVITY

SIA ALL

- b) Replace the PRSOV. These are the tasks:
 - PRSOV Removal, AMM TASK 36-11-04-000-801
 - PRSOV Installation, AMM TASK 36-11-04-400-801
- 9) Increase Ps to 60 70 psig.
- 10) If Pc is between 20 28 psig, then do these steps:
 - a) Decrease Ps to 0 psig.
 - b) Remove all the pressure gages, associated test equipment, and hardware that was installed.
 - c) Re-connect all sense lines that were disconnected using Never-Seez Pure Nickel Special anti-seize compound.
- (d) If Pc is 20-28 psi, then continue.
- (11) Do this task: Bleed Air Check Valve Inspection, AMM TASK 36-11-02-200-801.
 - NOTE: This step only applies if duct pressure goes to 0 psi after the system switches ofer from 9th stage to 5th stage bleed air at approximately 60% N1 at sea level.
 - (a) If you find a problem during the inspection, then do the corrective action shown in the inspection procedure.
 - 1) Do the repair confirmation at the end of this task.
 - (b) If you don't find a problem during the inspection, then install the bleed air check valve and continue.
 - 1) This is the task: Bleed Air Check Valve Installation, AMM TASK 36-11-02-400-801.

G. Electrical Checks - Fault Isolation

- (1) Do this check of electrical harness MW0311 between the engine firewall connector DP1104 and the connector DP1102 to the solenoid on the bleed air regulator:
 - NOTE: These electrical checks are needed to determine why the circuit breaker that controls the PRSOV trips.
 - NOTE: Harnesses with part numbers 325-029-901-0 or 325-029-902-0 are susceptible to internal shorting which can cause the bleed air valve circuit breaker to trip and prevent the PRSOV from opening. This type of failure is not always a hard fault (always present). Therefore, if you found the applicable circuit breaker tripped or if it has tripped in the past, it is quite possible there is an intermittent short in the harness. A thorough check of the harness must be accomplished to determine if the harness must be replaced.
 - NOTE: A multimeter is required to perform the electrical checks in this procedure. If there is an intermittent short or the fault is not present at any point in the Fault Isolation, you may use a megohmmeter instead of the multimeter to perform a more thorough check of the electrical circuit.
 - (a) Open these circuit breakers and install safety tags:

F/O Electrical System Panel, P6-4

Row	<u>Col</u>	<u>Number</u>	<u>Name</u>
Α	7	C00796	AIR CONDITIONING BLEED AIR VALVES L
В	7	C00797	AIR CONDITIONING BLEED AIR VALVES R

- (b) Disconnect electrical connectors DP1104 and DP1102.
- (c) Do these steps to do a general visual inspection of the airplane wire harness MW0311:

SIA ALL

- Visually examine the airplane wire harness for loose connections, worn areas, deformation and internal damage.
- 2) If you find loose connections, worn areas, deformation and internal damage, then do these steps:
 - a) Repair the problems that you find.
 - b) Do the Repair Confirmation at the end of this task.
 - c) If the Repair Confirmation is not satisfactory, then continue.
- 3) If you do not find loose connections, worn areas, deformation and internal damage, then continue.
- (d) Do the continuity checks on the MW0311 harness as listed below:

DP1104	DP1102
pin 12	pin 7
pin 11	pin 6
pin 3	pin 5
pin 10	pin 10
pin 2	pin 9

- 1) If any of the continuity checks failed, then replace the MW0311 harness:
 - a) These are the tasks:
 - 3 O'clock Strut Harness Removal, AMM TASK 73-21-06-000-802-F00
 - 3 O'clock Strut Harness Installation, AMM TASK 73-21-06-400-802-F00
 - b) Do the Repair Confirmation at the end of this task.
 - c) If the Repair Confirmation is not satisfactory, then continue.
- If the continuity checks are satisfactory, then continue.
- 3) Use a multimeter or megohmmeter to do checks for continuity from the backshell of connector DP1102 to pins 5, 7, and 10 of connector DP1102.
- 4) If any of the electrical checks fail, replace the wiring harness MW0311:
 - a) These are the tasks:
 - 3 O'clock Strut Harness Removal, AMM TASK 73-21-06-000-802-F00
 - 3 O'clock Strut Harness Installation, AMM TASK 73-21-06-400-802-F00
 - b) Do the Repair Confirmation at the end of this task.
- 5) If all of the electrical checks are satisfactory, then continue.
- (e) Connect electrical connector DP1102 to the bleed air regulator.
- (f) Do a check of the resistance between pins 3 and 11 of connector D30204 (D30404).
 - 1) If the resistance is not 20 40 ohms, then replace the MW0311 wiring harness. To replace the wiring harness, These are the tasks:
 - 3 O'clock Strut Harness Removal, AMM TASK 73-21-06-000-802-F00
 - 3 O'clock Strut Harness Installation, AMM TASK 73-21-06-400-802-F00
 - 2) If the resistance is 20 40 ohms, then do the Repair Confirmation at the end of the task.

(2) Do this check of the electrical connector for the bleed air regulator:

<u>NOTE</u>: If there is a problem with the bleed air regulator or power is not supplied to the bleed air regulator, the PRSOV may not close.

(a) Make sure that these circuit breakers are open:

F/O Electrical System Panel, P6-4

Row	Col	<u>Number</u>	<u>Name</u>
Α	7	C00796	AIR CONDITIONING BLEED AIR VALVES L
В	7	C00797	AIR CONDITIONING BLEED AIR VALVES R

- (b) Disconnect the electrical connector DP1102 at the bleed air regulator, M1180.
- (c) Examine the connector for contamination and damage:
 - 1) If the connector has contamination, then clean the connector.
 - 2) If the connector has a loose backshell, bent or pushed pins, then do these steps:
 - a) Repair the connector.
 - b) Reconnect the connector DP1102 to the bleed air regulator.
 - c) Do the Repair Confirmation at the end of this task.
 - d) If the Repair Confirmation is not satisfactory, then continue.
- (d) If you do not find any contamination or damage at the connector, then continue.
- (3) Do this check for power at the bleed air regulator:
 - (a) Make sure that these circuit breakers are closed:

F/O Electrical System Panel, P6-4

Row	<u>Col</u>	<u>Number</u>	<u>Name</u>
Α	7	C00796	AIR CONDITIONING BLEED AIR VALVES L
В	7	C00797	AIR CONDITIONING BLEED AIR VALVES R

- (b) Set the applicable engine BLEED switch on the P5-10 panel to the ON position.
- (c) Do a check for 22 30 VDC between pins 5 and 6 (ground) of the applicable connector DP1102.
- (d) If there is 22 30 VDC between pins 5 and 6 (ground) of the applicable connector, then do these steps:
 - 1) Replace the bleed air regulator, M1180. These are the tasks:
 - Bleed Air Regulator Removal, AMM TASK 36-11-03-000-801
 - Bleed Air Regulator Installation, AMM TASK 36-11-03-400-801
 - 2) Do the Repair Confirmation at the end of this task.
- (e) If there is not 22 30 VDC between pins 5 and 6 (ground) of the applicable connector, then continue.
- (4) Do this check of the wiring:
 - (a) For the left side pneumatic system, do a continuity check between these pins on connector DP1102 at the bleed air regulator, M1180, and connector D458A at the air conditioning relay module, M324 on the E4-1 shelf.

DP110	D458A	
pin 5		pin 2

EFFECTIVITY
SIA ALL

(b) For the right side pneumatic system, do a continuity check between these pins on connector DP1102 at the bleed air regulator, M1180, and connector D10002A at the air conditioning relay module, M1455 on the E4-1 shelf.

DP1102 D10002A pin 5 pin 2

- (c) If you find a problem with the wiring, then do these steps:
- (d) Repair the wiring.
- (e) Re-connect the electrical connector DP1102 to the bleed air regulator, M1180.
- (f) For the left side pneumatic system, reconnect the electrical connector D458A to the air conditioning relay module, M324.
- (g) For the right side pneumatic system, reconnect the electrical connector D10002A to the air conditioning relay module, M1455.
- (h) Do the Repair Confirmation at the end of this task.

H. Repair Confirmation

- (1) Remove all pressure gages, associated test equipment and hardware.
- (2) Re-connect all sense lines that were disconnected.
 - (a) Use Never-Seez Pure Nickel Special anti-seize compound (or equivalent) when you reconnect the sense lines.

OBEY THE INSTRUCTIONS IN THE PROCEDURE TO CLOSE THE THRUST REVERSERS. IF YOU DO NOT OBEY THE INSTRUCTIONS, INJURIES TO PERSONS AND DAMAGE TO EQUIPMENT CAN OCCUR.

- (3) For the left thrust reverser, do this task: Close the Thrust Reverser (Selection), AMM TASK 78-31-00-010-804-F00.
- (4) Activate the thrust reverser. To activate the thrust reverser, do this task: Thrust Reverser Activation After Ground Maintenance, AMM TASK 78-31-00-440-803-F00.
- (5) Close the fan cowl panels. To close the fan cowl panels, do this task: Close the Fan Cowl Panels. AMM TASK 71-11-02-410-801-F00.
- (6) Reactivate the Leading Edge Flaps and Slats. To reactivate the LE Flaps and Slats, do this task: Leading Edge Flaps and Slats Activation, AMM TASK 27-81-00-440-801
- (7) Supply pressure to the pneumatic system with the engine(s), APU or a ground air source. To supply pressure, do this task: Supply Pressure to the Pneumatic System (Selection), AMM TASK 36-00-00-860-801.
- (8) Set the ISOLATION VALVE switch on the P5-10 panel to the OPEN position.
- (9) Examine the dual duct pressure indicator, N12, on the P5-10 panel.
- (10) Make sure that both duct pressure pointers are not at 0 psi.
- (11) If both duct pressure pointers are not at 0 psig, then you corrected the fault.
- (12) If a duct pressure pointer is at 0 psi, then return to the step in the Fault Isolation that directed you to this Repair Confirmation and continue.
- (13) Remove the pressure from the pneumatic system. To remove pressure, do this task: Remove Pressure from the Pneumatic System, AMM TASK 36-00-00-860-806.

------ END OF TASK ------

SIA ALL

806. Isolation Valve Does Not Open or Close Properly - Fault Isolation

A. Description

- (1) (SDS SUBJECT 36-13-00)
- (2) The isolation valve is controlled by a three-position switch on the P5-10 panel. The switch is also electrically connected through these four switches: engine No. 1 bleed switch, engine No. 2 bleed switch, left pack switch and right pack switch.
 - (a) If the isolation valve switch is in the AUTO position with the Engine No. 1 and No. 2 bleed switches in the ON position and the left and right pack switches in the AUTO or HIGH position, the isolation valve will close.
 - (b) However, if the isolation valve switch is in the AUTO position with one or more of these four switches in the OFF position: Engine No. 1 bleed switch, Engine No. 2 bleed switch, left pack switch or right pack switch, the isolation valve will open.
 - (c) The other two positions (OPEN and CLOSE) function as a conventional switch regardless of the pack and engine bleed switch positions.
 - (d) APU bleed air or bleed air from an external ground air source may be used to determine if the operation of the isolation valve is correct. The APU connects to the pneumatic manifold on the left side of the isolation valve. An external ground air source connects to the pneumatic manifold on the right side of the isolation valve. Therefore if the isolation valve is closed, the side of the pneumatic manifold that will be pressurized depends upon the source of the pneumatic pressure.

B. Possible Causes

- (1) Bleed air isolation valve, V16
 - (a) Failure Mode: open or shorted motor windings, a failed limit switch, a valve in a locked position
- (2) Air conditioning module, P5-10
 - (a) Failure Mode: failure of air conditioning pack switch(s), engine bleed switch(s), isolation valve switch, or internal wiring
- (3) Wiring
 - (a) Failure Mode: Open or short in wiring

C. Circuit Breakers

(1) This is the primary circuit breaker related to the fault:

F/O Electrical System Panel, P6-4

Row	<u>Col</u>	<u>Number</u>	<u>Name</u>
Α	5	C00259	AIR CONDITIONING BLEED AIR VALVE ISLN

D. Related Data

· EFFECTIVITY

- (1) Component Location (36-10 TASK SUPPORT Figure 303)
- (2) Troubleshooting Check (36-10 TASK SUPPORT Figure 310)
- (3) (SSM 36-11-11)
- (4) (WDM 36-11-11)

36-10 TASK 806

SIA ALL

E. Initial Evaluation

- (1) Supply pressure to the pneumatic system with the APU or an external ground air source with one of the procedures listed below:
 - (a) Do this task: Supply Pressure to the Pneumatic System with the APU, AMM TASK 36-00-00-860-803.
 - (b) Do this task: Supply Pressure to the Pneumatic System with an External Ground Air Source, AMM TASK 36-00-00-860-802.
- (2) Set the ISOLATION VALVE switch on the P5-10 panel to the OPEN position.
- (3) If the APU is used to pressure the pneumatic system, then make sure the L and R pointers on the dual duct pressure indicator show a minimum of 12 psi.
- (4) If an external ground air source is used to pressure the pneumatic system, then make sure the L and R pointers on the dual duct pressure indicator indicate the same pressure as the external ground air source indicates.
- (5) If you do not have either the APU or an external ground air source available, examine the valve position indicator on the isolation valve, V16, to make sure that it is at OPEN.
- (6) Set the ISOLATION VALVE switch to the CLOSE position.
- (7) If the APU is being used to pressure the pneumatic system, then make sure the R pointer on the dual duct pressure indicator decreases to 0 (+/-2) psi.
 - (a) If the R pointer on the dual duct pressure indicator does not decrease to 0 (+/-2) psi, then do the Fault Isolation procedure.
 - (b) If the R pointer on the dual duct pressure indicator does decrease to 0 (+/-2) psi, then continue.
- (8) If an external ground air source is being used to pressure the pneumatic system, then make sure the L pointer on the dual duct pressure indicator decreases to 0 (+/-2) psi.
 - (a) If the L pointer on the dual duct pressure indicator does not decrease to 0 (+/-2) psi, then do the Fault Isolation procedure.
 - (b) If the L pointer on the dual duct pressure indicator does decrease to 0 (+/-2) psi, then continue.
- (9) Set the ISOLATION VALVE switch on the P5-10 panel to the OPEN position.
- (10) If the APU is being used to pressure the pneumatic system, then make sure the L and R pointers on the dual duct pressure indicator indicate a minimum of 12 psi and the pointers are within 3 psi of each other.
 - (a) If the R pointer does not increase, then do the Fault Isolation procedure.
 - (b) If the duct pressure pointers differ by more than 3 psi, visually examine the position indicator on the valve to make sure that it is fully open.
 - If the valve is open and the duct pressure pointers differ by more than 3 psi, do this fault isolation:
 - Do this task: Duct pressure, L and R pointers not the same (split) the APU is the bleed source - Fault Isolation, 36-10 TASK 808.
 - (c) If the L and R pointers on the dual duct pressure indicator indicate a minimum of 12 psi and the pointers are within 3 psi of each other, then continue.
- (11) If an external ground air source is being used to pressure the pneumatic system, then make sure the L and R pointers on the dual duct pressure indicator indicate the same pressure as the external ground air source and the pointers are within 3 psi of each other.

SIA ALL 36-10 TASK 806

- (a) If the L pointer does not increase, then do the Fault Isolation procedure.
- (b) If the duct pressure pointers differ by more than 3 psi, visually examine the position indicator on the valve to make sure that it is fully open.
 - 1) If the valve is open and the duct pressure pointers differ by more than 3 psi, do this fault isolation:
 - a) Do this task: Duct pressure, L and R pointers not the same (split) the APU is the bleed source Fault Isolation, 36-10 TASK 808.
- (c) If the L and R pointers on the dual duct pressure indicator indicate the same pressure as the external ground air source and the pointers are within 3 psi of each other, then continue.
- (12) If you do not have either APU or an external ground air source available, visually examine the position indicator on the isolation valve to make sure it shows the valve is open.
 - (a) If the valve is not open, then do the Fault Isolation procedure.
 - (b) If the position indicator shows that the valve is open, then continue.
- (13) Set the ISOLATION VALVE switch on the P5-10 panel to the AUTO position.
- (14) Make sure that both the L and R duct pressure pointers on the dual duct pressure indicator on the P5-10 panel indicate a minimum of 12 psi and the indications are within 3 psi of each other.
 - (a) If the L and R pointers do not indicate within 3 psi of each other, then do the fault isolation that follows:
 - Do this task: Duct pressure, L and R pointers not the same (split) the APU is the bleed source - Fault Isolation, 36-10 TASK 808.
 - (b) If the L and R pointers are within 3 psi of each other, then continue.
- (15) If you are using the APU to pressurize the pneumatic system, set the BLEED 1, BLEED 2, L PACK and R PACK switches on the P5-10 panel to the positions listed below for configurations 1-6 and check the L and R duct pressures for each configuration:

Table 201

CONFIG.	L BLEED	R BLEED	L PACK	R PACK	L DUCT	R DUCT
1	ON	ON	ON	ON	PSI	NO PSI
2	OFF	ON	ON	ON	PSI	PSI
3	ON	OFF	ON	ON	PSI	PSI
4	ON	ON	OFF	ON	PSI	PSI
5	ON	ON	ON	ON	PSI	NO PSI
6	ON	ON	ON	OFF	PSI	PSI

- (a) Make sure the left and right duct pressure indications are correct for each configuration.
- (b) If the duct pressure indications are not correct for each configuration, then replace the P5-10 panel. These are the tasks:
 - Air Conditioning Module Removal, AMM TASK 21-51-65-000-801
 - Air Conditioning Module Installation, AMM TASK 21-51-65-400-801
- (c) Do the Repair Confirmation at the end of this task.

EFFECTIVITY

SIA ALL

(16) If you are using an external ground air source to pressurize the pneumatic system, set the BLEED 1, BLEED 2, L PACK and R PACK switches on the P5-10 panel to the positions listed below for configurations 1-6 and check the L and R duct pressures for each configuration:

Table 202

CONFIG.	L BLEED	R BLEED	L PACK	R PACK	L DUCT	R DUCT
1	ON	ON	ON	ON	NO PSI	PSI
2	OFF	ON	ON	ON	PSI	PSI
3	ON	OFF	ON	ON	PSI	PSI
4	ON	ON	OFF	ON	PSI	PSI
5	ON	ON	ON	OFF	PSI	PSI
6	ON	ON	ON	ON	NO PSI	PSI

- (a) Make sure the left and right duct pressure indications are correct for each configuration.
- (b) If the duct pressure indications are not correct for each configuration, then replace the P5-10 panel. These are the tasks:
 - Air Conditioning Module Removal, AMM TASK 21-51-65-000-801
 - Air Conditioning Module Installation, AMM TASK 21-51-65-400-801
- (c) Do the Repair Confirmation at the end of this task.
- (17) If the isolation valve operates correctly, then there may have been an intermittent fault.
 - (a) No further action is required other than to complete this Initial Evaluation.
- (18) Remove the pressure from the pneumatic system as follows:
 - (a) Do this task: Remove Pressure from the Pneumatic System, AMM TASK 36-00-00-860-806.
- (19) As applicable, install any access panels that were removed for the Initial Evaluation.
- (20) Close the following, or any other access doors that were opened for this Initial Evaluation:
 - (a) Close this access panel:

Number	Name/Location		
192CL	ECS Access Door		

F. Fault Isolation Procedure

- (1) Do this task: Remove Pressure from the Pneumatic System, AMM TASK 36-00-00-860-806.
- (2) Set the ISOLATION VALVE switch in the position applicable to one of the steps that follow:
 - (a) If the valve will not move to the open position when commanded, set the ISOLATION VALVE switch to the OPEN position.
 - (b) If the valve will not move to the closed position when commanded, set the ISOLATION VALVE switch to the CLOSE position.
- (3) Do this check for power to the bleed air isolation valve:
 - (a) Open this circuit breaker:

F/O Electrical System Panel, P6-4

Row	<u>Col</u>	<u>Number</u>	<u>Name</u>
Α	5	C00259	AIR CONDITIONING BLEED AIR VALVE ISLN

EFFECTIVITY
SIA ALL

- (b) Disconnect the connector D398 at the bleed air isolation valve, V16.
- (c) Close this circuit breaker:

F/O Electrical System Panel, P6-4

Row Col Number Name

A 5 C00259 AIR CONDITIONING BLEED AIR VALVE ISLN

- (d) Do a check for 115V AC between pins 1 and 3 (ground) of connector D398 if the ISOLATION VALVE switch is set to the OPEN position or between pins 2 and 3 (ground) of connector D398 if the ISOLATION VALVE switch is set to the CLOSE position.
 - 1) If 115V AC is present between pins 1 and 3 or between pins 2 and 3, as applicable, then replace the isolation valve. These are the tasks:
 - Bleed Air Isolation Valve Removal, AMM TASK 36-13-04-000-801
 - Bleed Air Isolation Valve Installation, AMM TASK 36-13-04-400-801
 - a) Do the Repair Confirmation at the end of the task.
 - 2) If 115V AC is not present between pins 1 and 3 or between pins 2 and 3, as applicable, then do these steps:
 - a) Do a check of the wiring between pin 3 of connector D398 and the ground GD548-AC (WDM 36-11-11).
 - b) Repair any problems that you find.
 - c) If the ground is good, then continue.
- (4) Do these steps to do a check of the wiring between the isolation valve and the P5-10 panel:
 - (a) Get access to the back of the P5-10 panel and disconnect electrical connector D646.
 - (b) Do a check of the wiring between either pin 1 of connector D398 and pin 22 of electrical connector D646 on the P5-10 panel or pin 2 of connector D398 and pin 21 of electrical connector D646 on the P5-10 panel.
 - (c) Repair any problems that you find in the wiring (WDM 36-11-11).
 - (d) Re-connect electrical connector D646 to the back of the P5-10 panel.
 - (e) Re-connect electrical connector D398 to the isolation valve.
 - (f) Do the Repair Confirmation at the end of this task.

G. Repair Confirmation

- (1) Set the ISOLATION VALVE switch to the AUTO position.
 - (a) Make sure the valve position indicator on the bleed air isolation valve is in the open position.
- (2) Suppy pressure to the pneumatic system with one of the steps below:
 - (a) Do this task: Supply Pressure to the Pneumatic System with the APU, AMM TASK 36-00-00-860-803.
 - (b) Do this task: Supply Pressure to the Pneumatic System with an External Ground Air Source, AMM TASK 36-00-00-860-802.
- (3) Examine the duct duct pressure indicator on the P5-10 panel:
 - (a) Make sure that both the L and R pressure pointers on the duct duct pressure indicator indicate a minimum of 12 psi and the pressure indications are within 3 psi of each other.
 - (b) If both the L and R pressure indications are not within 3 psi of each other, then do this fault isolation:

SIA ALL

- 1) Do this task: Duct pressure, L and R pointers not the same (split) the APU is the bleed source Fault Isolation, 36-10 TASK 808.
- (c) If both the L and R pressure indications are with 3 psi of each other, then continue.
- (4) If you are using the APU to pressurize the pneumatic system, set the BLEED 1, BLEED 2, L PACK and R PACK switches on the P5-10 panel to the positions listed below for configurations 1-6 and check the L and R duct pressures for each configuration:

Table 203

CONFIG.	L BLEED	R BLEED	L PACK	R PACK	L DUCT	R DUCT
1	ON	ON	ON	ON	PSI	NO PSI
2	OFF	ON	ON	ON	PSI	PSI
3	ON	OFF	ON	ON	PSI	PSI
4	ON	ON	OFF	ON	PSI	PSI
5	ON	ON	ON	ON	PSI	NO PSI
6	ON	ON	ON	OFF	PSI	PSI

- (a) Make sure the left and right duct pressure indications are correct for each configuration.
- (5) If you are using an external air source to pressurize the pneumatic system, set the BLEED 1, BLEED 2, L PACK and R PACK switches on the P5-10 panel to the positions listed below for configurations 1-6 and check the duct pressures for each configuration:

Table 204

CONFIG.	L BLEED	R BLEED	L PACK	R PACK	L DUCT	R DUCT
1	ON	ON	ON	ON	NO PSI	PSI
2	OFF	ON	ON	ON	PSI	PSI
3	ON	OFF	ON	ON	PSI	PSI
4	ON	ON	OFF	ON	PSI	PSI
5	ON	ON	ON	OFF	PSI	PSI
6	ON	ON	ON	ON	NO PSI	PSI

- (a) Make sure the left and right duct pressure indications are correct for each configuration.
- (6) If the bleed air isolation valve operates correctly, then you corrected the fault.
- (7) Do this task: Remove Pressure from the Pneumatic System, AMM TASK 36-00-00-860-806.
- (8) Install any access panels that were removed.
- (9) Close the following, or any other access doors that were opened during this procedure:
 - (a) Close this access panel:

Number Name/Location
192CL ECS Access Door

(10) If the isolation valve did not operate properly, then return to the step in the Fault Isolation procedure that directed you to the Repair Confirmation and continue with the fault isolation.

END	OF 1	ΓΔSK	
		IASN	

SIA ALL

807. <u>Duct pressure, L and R pointers not the same (split), the engine is the bleed source - Fault Isolation</u>

A. Description

(1) Split duct pressure is a condition in which the duct pressure on one side, as shown on the dual duct pressure indicator, is either lower or higher than the duct pressure on the other side with the engines as the bleed source. Duct pressure splits can occur during both normal and abnormal operation of the engine bleed systems. The procedures in this task will enable you to determine if a fault exists in either the left or right pneumatic system based on information from the pilot report or knowledge of the pneumatic system pressure at specific engine N1 speeds and aircraft altitudes.

There are no system controls to regulate both systems to a common pressure so an acceptable split in duct pressure cannot be specified. Each system regulates duct pressure independent from the other when the isolation valve is closed and should be evaluated based on the engine N1, not compared to the other duct pressure. FIM 36–10 Task Support Figure 305 defines normal operating limits for the 9th stage regulated pressure as 32 ± 6 psig and 5th stage regulated pressure as 42 ± 8 psig.

NOTE: Recommended Airplane Condition Monitoring System (ACMS) low duct pressure alert for regulated 5th stage area is duct pressure less than 28 psi. For regulated 9th stage area, the low pressure alert is duct pressure less than 22 psi (Service Letter 36-024). If duct pressure is less than the normal operating limits for the regulated 5th and 9th stage areas shown on Figure 305, but equal to or greater than the recommended alert limits, maintenance action can be deferred until duct pressure is below the recommended alert limits.

- (2) When an engine pneumatic system is operating properly, the N1 speed of the engine and altitude of the aircraft determines what the pneumatic system pressure should be when within the regulated 5th stage or regulated 9th stage pressure areas of the "Duct Pressure Versus N1 at sea level and 5K feet) graph or the "Duct Pressure Versus N1 at sea level, 10K feet, 22K feet, 31K feet, 37K feet and 41K feet" graph.
- (3) If the pilot report contains all of the necessary information to use either one of the graphs, a system test using the engines may not be necessary to determine if one or both systems have faults. For example, if the data from the pilot report shows that the duct pressure split occurred when one of the engine pneumatic systems was operating in the unregulated pressure areas or within the 5th or 9th stage switchover areas, then fault isolation does not have to be accomplished.
- (4) If the pilot report does not contain all of the necessary information, the duct pressure split can be greater than 15 psi but the pneumatic systems still may be operating within normal limits. In this situation, a system test using the engines is necessary to determine if either system has faults because the systems may have been operating in different modes of pressure regulation and a duct pressure comparison under those conditions would be invalid.
- (5) In summary, duct pressure splits do not always indicate a fault condition. As long as the pressures are within system tolerances for the pneumatic system 9th and 5th stage operation, fault isolation is not required.

B. Possible Causes

- (1) These are the possible causes for the condition where the duct pressure on one side is lower than normal based on the "Duct Pressure Versus N1 at Sea Level" graphs. See task 804.
 - (a) Duct pressure transducer, T405 (left) or T403 (right)
 - 1) Failure Mode: Faulty transducer

SIA ALL

- (b) Dual duct pressure indicator, N12
 - 1) Failure Mode: Faulty indicator
- (c) Precooler control valve
 - 1) Failure Mode: stuck closed or not modulating properly
- (d) Precooler control valve sensor (390 F)
 - 1) Failure Mode: Not opening when temperature is in the 390-440 degree F range
- (e) Pressure Regulator and Shutoff Valve (PRSOV)
 - 1) Failure Mode: sticking
- (f) 450 Degree F thermostat
 - 1) Failure Mode: failed open
- (g) Bleed air regulator, M1180
 - 1) Failure Mode: regulates control pressure too low (Service Letter 71-051)
- (h) High stage valve
 - 1) Failure Mode: sticking
- (i) High stage regulator
 - 1) Failure Mode: not regulating properly (reverse flow)
- (j) Sense lines and fittings

NOTE: There are several sense lines where leakage can cause low duct pressure.

- 1) Transducer sense line: low duct pressure APU and engines (all phases of operation)
- 2) PRSOV control pressure line from bleed air regulator to PRSOV and 450 F thermostat line (5th and 9th stage operations)
- 3) Supply line to the bleed air regulator (5th and 9th stage operations)
- 4) Control pressure line between the high stage regulator and high stage valve (9th stage operations)
- 5) Supply pressure line to high stage regulator (9th stage operations)
- 6) Sense line between the precooler control valve and 390 F sensor (obstructed not leaking)
- (k) Wiring (Indication Circuit)

NOTE: This applies to all pneumatic sources.

- 1) Failure Mode:
 - a) Open in the wiring results in 0 psi indication
 - b) Short in the wiring results in low pressure indication
- (I) Precooler
 - Failure Mode:
 - a) Obstructed
 - b) Cracked and leaking
 - c) Contamination
 - d) Temperature topping at high altitude (450 F thermostat) or on high regulated 5th or 9th stage operations
- (m) Precooler kiss seal

EFFECTIVITY

SIA ALL

- 1) Failure Mode: Distorted, torn or missing
- (n) Duct pressure transducer, T405 (left) and T403 (right)
 - 1) Failure Mode: Faulty transducer
- (o) Dual duct pressure indicator, N12
 - 1) Failure Mode: Faulty indicator
- These are the possible causes for the condition where the duct pressure on one side is higher than normal based on the "Duct Pressure Versus N1 at Sea Level" graphs. Refer to Duct Pressure High, the Engine is the Bleed Source - Fault Isolation, 36-10 TASK 803.
 - (a) Pressure regulator and shutoff valve (PRSOV)
 - 1) Failure Mode: sticking
 - (b) Bleed air regulator, M1180
 - 1) Failure Mode: Regulating control pressure too high
 - (c) Leak in PRSOV downstream pressure sense line or fittings
 - 1) Failure Mode: Leakage will cause the PRSOV to regulate too high
 - (d) Wiring
 - 1) Failure Mode: induced voltage

C. Circuit Breakers

(1) Refer to circuit breakers in the fault isolation task that this procedure references.

D. Related Data

SIA ALL

(1) (36-10 TASK SUPPORT Figure 305)

E. Initial Evaluation

- (1) Collect the applicable information that follows, if available, either from the pilot report or the data recorded from an observed fault:
 - (a) Both left and right pneumatic duct pressures at the time of fault observation
 - (b) Both left and right engine N1 speeds at the time of fault observation
 - (c) Altitude at time of fault observation
 - NOTE: The information in the above three steps is necessary to perform the Initial Evaluation. The information in the next four steps is not necessary but it may be helpful.
 - (d) Position of the isolation valve switch
 - (e) Position of the engine bleed valve switches
 - (f) Position of the APU bleed switch
 - (g) Pneumatic pressure operated systems at the time of fault observation such as:

NOTE: If other related faults were observed, then perform the respective FIM tasks for those faults.

- 1) Respective air conditioning system
- 2) Cowl or wing anti-ice systems
- 3) Cabin pressurization problems if existing
- (2) If the pilot report contains the following data, then perform the Initial Evaluation Procedure.
 - (a) Both left and right pneumatic duct pressures at the time of fault observation

- (b) Both left and right engine N1 speeds at the time of fault observation
- (c) Altitude at time of fault observation.
- (3) If the pilot report does not contain the following data, then perform the Fault Isolation Procedure.
 - (a) Both left and right pneumatic duct pressures at the time of fault observation
 - (b) Both left and right engine N1 speeds at the time of fault observation
 - (c) Altitude at time of fault observation
- (4) If this was an observed fault and the fault conditions are not known, then perform the Fault Isolation Procedure.
 - NOTE: The Fault Isolation Procedure and the Repair Confirmation procedure in this task are similar. Both procedures require a high power run to determine if both pneumatic system duct pressures are within limits.
- (5) Low duct pressures can be caused by the bleed system crossover from low-to-high stage occurring at a different time for the left and right sides. This can give the impression that one side has a lower pressure than the other side. If the crossover occurs within the normal range as shown on the "Duct Pressure Versus N1 at Various Altitudes" graph (36-10 TASK SUPPORT Figure 305), the system is normal and no action is required.
- (6) If the necessary information is available in the pilot report, use the "Duct Pressure Versus N1 at 10K feet, 22K feet, 31K feet, 37K feet, or 41K feet" graph or if you have the necessary information from an observed fault, use the "Duct Pressure Versus N1 at Sea Level and 5000 feet" graph to determine if both the left and right engine bleed systems operated within the limits of the graph.
 - NOTE: If the fault was observed at an altitude other than sea level, 5K, 10K, 22K, 31K, 37K or 41K feet, you may use the altitude line that is closest to the altitude at which the fault was observed provided that the N1 speed of both engines at that time were within the N1 speed necessary for both pneumatic systems to be operating in either the regulated 5th stage or regulated 9th stage pressure areas on both the higher and lower altitude lines on the graph. For example, if the pilot report indicates a duct pressure split at 16,000 feet during climb with both engine N1 speeds at 88%, you can see that both 10,000 feet and 22,000 feet altitudes lines on the graph indicate that both systems should be operating within the regulated 5th stage pressure of 42 (+/-8) psi at the N1 speed of 88% at both altitudes. See (36-10 TASK SUPPORT Figure 305).
 - (a) If you are not sure if both N1 speeds were sufficient for both the bleed systems to be operating within the regulated 5th or regulated 9th stage pressure areas or if you suspect that one or both systems were operating in the switchover area between regulated 5th and regulated 9th stage pressures or in the unregulated 5th or 9th stage area, then it is possible that both systems are operating properly and you should perform the Fault Isolation Procedure.
 - NOTE: If N1 speeds and the altitude at the time the fault was observed on one or both systems falls within the 5th and 9th stage switchover area or the unregulated 5th or 9th stage area, the duct pressure split can be greater than the graphs(s) show during normal operation.
 - NOTE: In the unlikely event that the reported duct pressures are at 50 and 34 psi (PRSOV regulates to 42 +/-8 psi) when both systems are operating on regulated 5th stage, then both systems may be showing signs of degradation. You must use your judgement, airline policy, and the aircraft's bleed system history to determine your course of action.

EFFECTIVITY
SIA ALL

- (b) If you determine that both system pressures are within limits and there were no faults reported with any of the user systems such as air conditioning, pressurization, wing or cowl anti-ice systems, a wing body overheat or a false engine fire warning condition, then the system is operating properly and no further action is necessary. You should monitor the aircraft's pneumatic systems operation on subsequent flights.
 - NOTE: Pneumatic duct pressure must be a minimum of 18 psig to supply sufficient air for cabin pressurization.
- (c) If you determine that one or both engine bleed systems has either low or high duct pressure, then continue.
- (7) If you know which side has low duct pressure, do this task: Duct Pressure Low, the Engine is the Bleed Source Fault Isolation, 36-10 TASK 804.
- (8) If you know which side has high duct pressure, do this task: Duct Pressure High, the Engine is the Bleed Source - Fault Isolation. 36-10 TASK 803.
- (9) If you do not know if either side has low or high duct pressure, then perform the Fault Isolation Procedure.

F. Fault Isolation

- NOTE: The Fault Isolation procedure and the Repair Confirmation procedure in this task are similar. Both procedures require a high power run to determine if both pneumatic system duct pressures are within limits.
- (1) Supply pressure to the pneumatic system with the APU. To supply pressure, do this task: Supply Pressure to the Pneumatic System with the APU, AMM TASK 36-00-00-860-803.
 - (a) You may use an external pneumatic source if the APU is not available to make sure the pneumatic duct pressure indications are accurate.
 - (b) If you use an external source, the pressure indication should be the same as the output of that source.
 - (c) The 12 psi minimum limit in the next step only applies if the APU is the pneumatic source.
- (2) Make sure that the isolation valve is open.
- (3) Make sure that the duct pressure pointers indicate a minimum of 12 psi.
- (4) Make sure that the duct pressure indications are within 3 psi of each other:
 - (a) If the duct pressure indications are not within 3 psi of each other, then do this fault isolation procedure:
 - 1) Do this task: Duct pressure, L and R pointers not the same (split) the APU is the bleed source Fault Isolation, 36-10 TASK 808.
 - (b) If the duct pressure indications are within 3 psi of each other, then continue.
- (5) Supply pressure to the pneumatic system with both engines. To supply pressure, do this task: Supply Pressure to the Pneumatic System with One or Both Engines, AMM TASK 36-00-00-860-804.
 - (a) If applicable, set the APU BLEED switch on the P5-10 panel to OFF or remove any external pneumatic source.
 - (b) Set the ISOLATION VALVE switch on the P5-10 panel to CLOSE.
 - (c) Make sure that the engine BLEED 1 and 2 switches are set to ON.
 - (d) Make sure that both left and right manifold duct pressures increase to 10-25 psi:
 - <u>NOTE</u>: The duct pressure pointers on the dual duct pressure indicator may fluctuate without user systems in operation.

SIA ALL

1) If both left and right manifold duct pressure do not increase to 10-25 psi, then record the pressures and continue.

NOTE: A dual duct pressure indication of less than 10 psi may be caused by a PRSOV not opening properly or a problem with the high stage regulator or high stage valve.

- 2) If both left and right manifold duct pressures increase to 10 25 psi, then continue.
- (6) Set the L and R PACK switches on the P5-10 panel to AUTO.
- (7) You can do the two steps [(8) and (9)] that follow at the same time or you can do them separately if you so choose.

NOTE: Doing them at the same time will prevent possible undesired airplane movement under inclement conditions.

OBEY THE SPECIFIED LIMITS. IF YOU IGNORE THE LIMITS, DAMAGE TO EQUIPMENT WILL OCCUR.

- (8) Slowly increase the left engine N1 speed in 5-10% increments to 80% or greater as you monitor the engine N1 and pressure indications on the dual duct pressure indicator:
 - (a) To comply with the engine operation limits, do this task: Engine Operation Limits, AMM TASK 71-00-00-800-806-F00.
 - (b) Make sure the L pressure pointer on the dual duct pressure indicator follows the "Duct Pressure Versus N1 at Sea Level and 5000 feet" graph and stays within the limits of the graph.
 - 1) Make a record of any N1 speeds and pressures where the pressure is either lower or higher than the limits of the graph.
 - (c) Keep the engine N1 speed at 80% or greater for a minimum of 5 minutes.
 - (d) Monitor left side duct pressure to make sure it stays at 42 (+/-8) psi.
 - If the left side duct pressure starts to decrease after it reaches a stable pressure of 42 (+/-8) psi, there is most likely a temperature related problem and not a pressure regulation fault.
 - a) Possible causes for the pressure decrease are a faulty high stage valve, high stage regulator, a precooler control valve, a precooler control valve sensor or the 450 F thermostat.

OBEY THE SPECIFIED LIMITS. IF YOU IGNORE THE LIMITS, DAMAGE TO EQUIPMENT WILL OCCUR.

- (9) Slowly increase the right engine N1 speed in 5-10% increments to 80% or greater as you monitor the engine N1 and pressure indications on the dual duct pressure indicator:
 - (a) To comply with the engine operation limits, do this task: Engine Operation Limits, AMM TASK 71-00-00-800-806-F00.
 - (b) Make sure the R pressure pointer on the dual duct pressure indicator follows the "Duct Pressure Versus N1 at Sea Level and 5000 feet" graph and stays within the limits of the graph.

EFFECTIVITY
SIA ALL

36-10 TASK 807

Page 281 Jun 15/2023

- Make a record of any N1 speeds and pressures where the pressure is either lower or higher than the limits of the graph.
- (c) Keep the engine N1 speed at 80% or greater for a minimum of 5 minutes.
- (d) Monitor right side duct pressure to make sure it stays at 42 (+/-8) psi.
 - 1) If the right side duct pressure starts to decrease after it reaches a stable pressure of 42 (+/-8) psi, there is most likely a temperature related problem and not a pressure regulation fault.
 - a) Possible causes for the pressure decrease are a faulty high stage valve, high stage regulator, a precooler control valve, a 390 F precooler control valve sensor or the 450 F thermostat.
- (10) Set the L and R PACK switches to OFF.
- (11) Slowly return both engine throttles to idle and allow the engines to stabilize.
- (12) Do this task: Stop the Engine Procedure (Usual Engine Stop), AMM TASK 71-00-00-700-819-F00.
- (13) If one or both sides has duct pressure lower than 34 psi when operating on regulated 5th stage pressure, less than 26 psi when operating on regulated 9th stage pressure or is less than 10 psi in the unregulated 9th stage mode, do this task:
 - (a) Do this task: Duct Pressure Low, the Engine is the Bleed Source Fault Isolation, 36-10 TASK 804.
- (14) If one or both sides has duct pressure higher than 50 psi when operating on regulated 5th stage pressure, higher than 38 psi when operating on regulated 9th stage pressure or higher than 25 psi when operating in the unregulated 9th stage mode, do this step:
 - (a) Do this task: Duct Pressure High, the Engine is the Bleed Source Fault Isolation, 36-10 TASK 803.
- (15) If you do not find a fault with either the left or right pneumatic systems, then one of these situations exist:
 - (a) There was an intermittent fault

SIA ALL

- (b) One or both of the pneumatic systems was operating in the 5th to 9th stage transition, the 9th to 5th stage transition, or the unregulated 5th or 9th stage; any of which make a duct pressure comparison invalid.
- (c) Continue to the next step for a possible course of action.
- (16) Use your judgment, airline policy, the history of the aircraft's pneumatic systems, and any reports of user systems malfunctions to determine which of the following actions to take:
 - (a) Monitor the system performance on subsequent flights
 - (b) Perform the Engine Bleed System Health Check and the Precooler Control Valve System Health Check:
 - 1) Do this task: Engine Bleed Air System Health Check, AMM TASK 36-11-00-700-801.
 - Do this task: Precooler Control Valve System Health Check, AMM TASK 36-12-00-700-801.

808. Duct pressure, L and R pointers not the same (split) the APU is the bleed source - Fault Isolation

A. Description

(1) Split duct pressure is a condition in which the duct pressure on one side, as shown on the dual pressure indicator, is either lower or higher than the duct pressure on the other side when the APU is the only bleed source and the isolation valve is open. When the APU BLEED switch is ON and the isolation valve is open, the duct pressure in the left and right pneumatic manifolds should be the same. The left and right pneumatic pressure indication systems should indicate the actual duct pressures within a tolerance of plus/minus 2 psi. However, when the left and right systems are pressurized by only the APU bleed air, the maximum duct pressure indication difference (split) between the left and right indication systems is 3 psi.

B. Possible causes:

(1) Duct pressure transducer, T405 (Left) or T403 (Right)

(a) Failure Mode: out of tolerance

(2) Dual duct pressure indicator, N12

(a) Failure Mode: out of tolerance

(3) Isolation valve

(a) Failure Mode: not in commanded position

(4) Leaky sense line or fittings

(a) Failure Mode: loose fittings or damaged tube assembly

(5) Wiring

(a) Failure Mode: open or shorted wiring

C. Circuit Breakers

(1) These are the primary circuit breakers related to the fault:

F/O Electrical System Panel, P6-4

Row	<u>Col</u>	<u>Number</u>	<u>Name</u>
Α	5	C00259	AIR CONDITIONING BLEED AIR VALVE ISLN
Α	6	C01470	AIR CONDITIONING BLEED AIR XDCR LEFT
В	5	C00077	AIR CONDITIONING BLEED AIR PRESS IND
В	6	C01469	AIR CONDITIONING BLEED AIR XDCR RIGHT

D. Related Data

- 36-10 TASK SUPPORT Figure 302, 36-10 TASK SUPPORT Figure 303, 36-10 TASK SUPPORT Figure 308
- (2) SSM 36-21-11
- (3) WDM 36-21-11

E. Initial Evaluation

SIA ALL

NOTE: The initial evaluation will direct you to fault isolation procedures for component faults or faults in the electrical wiring (or component internal electrical faults).

(1) Make sure that none of the circuit breakers listed below have tripped:

(a) These are the circuit breakers:

F/O Electrical System Panel, P6-4

Row	<u>Col</u>	<u>Number</u>	<u>Name</u>
Α	5	C00259	AIR CONDITIONING BLEED AIR VALVE ISLN
Α	6	C01470	AIR CONDITIONING BLEED AIR XDCR LEFT
В	5	C00077	AIR CONDITIONING BLEED AIR PRESS IND
В	6	C01469	AIR CONDITIONING BLEED AIR XDCR RIGHT

- (b) Reset any circuit breakers that you find tripped.
- (c) If a circuit breaker trips again, then proceed to the Indication Circuit Wiring Fault Isolation Procedure.
- (d) If no circuit breaker was found tripped or if a circuit breaker was successfully reset, then continue.
- (2) Remove the pressure from the pneumatic system if not previously accomplished. To remove the pneumatic pressure, do this task: Remove Pressure from the Pneumatic System, AMM TASK 36-00-00-860-806.
- (3) Do this check of the precision of the dual duct pressure indicator:
 - (a) Make sure that the L and R pointers on the dual duct pressure indicator are at 0 (± 2) psi and are not split more than 3 psi.
 - (b) If one or both pointers do not indicate 0 (±2) psi or are split by 3 psi or greater, then perform the Indication System Fault Isolation Procedure on the faulty indication system(s).
 - (c) If both pointers indicate 0 (±2) psi and are within 3 psi of each other, then continue.
- (4) Supply pressure to the pneumatic system with the APU. To supply pressure, do this task: Supply Pressure to the Pneumatic System with the APU, AMM TASK 36-00-00-860-803.
 NOTE: You may use a pneumatic ground source to supply pneumatic pressure.
- (5) Set the ISOLATION VALVE switch on the P5-10 air conditioning panel to the OPEN position.
- (6) If the duct pressure pointers on both sides are not within 3 psi of each other, then proceed to the Indication System Fault Isolation Procedure.
- (7) If the duct pressure needles on both sides indicate a minimum of 12 psi and are within 3 psi of each other, then do these steps:
 - (a) Set the R PACK switch on the P5-10 air conditioning panel to the AUTO or HIGH position. NOTE: The left and right duct pressure indications may fluctuate momentarily.
 - (b) Allow the left and right duct pressures to stabilize.
 - (c) Make sure that the L and R duct pressure pointers are within 3 psi of each other:
 - 1) If the L and R duct pressure pointers are within 3 psi of each other, then the system is normal and no further action is required.
 - 2) If the L and R duct pressure pointers are not within 3 psi of each other, then continue.
- (8) Look at the position indicator on the isolation valve.
- (9) If the position indicator shows that the valve is not fully open, then fault isolate the isolation valve:
 - (a) Do this task: Isolation Valve Does Not Open or Close Properly Fault Isolation, 36-10 TASK 806.

SIA ALL

- (10) If the position indicator shows that the valve is fully open, then look for leaks at the sense lines and sense line fittings between the duct and the duct pressure transducer.
- (11) If you find leakage, then do these steps:
 - (a) Repair any leakage or problems that you find:
 - Use Never-Seez Pure Nickel Special anti-seize compound (or euivalent) when you reconnect sense lines.
 - (b) Do the Repair Confirmation at the end of this task.
- (12) If you do not find any leakage, then do the Indication System Fault Isolation Procedure.

F. Indication System - Fault Isolation Procedure

- (1) Set the ISOLATION VALVE switch on the P5-10 panel to the OPEN position.
- (2) If not done previously, look at the position indicator on the isolation valve to make sure it is fully open:
 - (a) If the isolation valve is not fully open, then fault isolate the valve as follows:
 - 1) Do this task: Isolation Valve Does Not Open or Close Properly Fault Isolation, 36-10 TASK 806.
 - (b) If the isolation valve is fully open, then continue.
- (3) Do these steps to prepare for a check of the precision of the indication system:
 - (a) Remove the pressure from the pneumatic system if not previously accomplished. To remove the pneumatic pressure, do this task: Remove Pressure from the Pneumatic System, AMM TASK 36-00-00-860-806.
 - (b) Disconnect the flexible sense line from the pneumatic duct in the system (left or right) that is suspected to be out of tolerance.
 - (c) Install a nitrogen source and a 60 psi test gauge, part of C36001-44 (or equivalent), to the flexible sense line.

NOTE: The test equipment used in this step is part of P/N C36001-44 Engine Bleed Air System Test Equipment listed in the 737 Illustrated Tool and Equipment List (ITEL).

DO NOT EXCEED 50 PSI. EXCESSIVE PRESSURE CAN DAMAGE THE EQUIPMENT.

- (4) Supply 50 psi to the pressure transducer with the nitrogen source.
- (5) Do these checks for leakage in the pneumatic indication system:
 - (a) Use a soap solution to examine for leaks in the flexible sense line and connections.
 - (b) If you find leaks in the flexible sense line and connections, do these steps:
 - 1) Remove the pressure from the transducer.
 - 2) Repair any leaks that you find:
 - a) Use Never-Seez Pure Nickel Special anti-seize compound (or equivalent) when you reconnect the flexible sense line or connections.
 - 3) Supply 50 psi with the nitrogen source to the transducer and test gage.
 - a) Make sure that all leaks have been repaired.
 - b) Continue.

SIA ALL

- (c) If there is no leakage detected in the flexible sense line and connections, then continue.
- (6) Make sure that the applicable pointer on the dual duct pressure indicator agrees within +/-3 psi of the test gage.
- (7) If the applicable pointer on the dual duct pressure indicator does not agree within +/-3 psi of the test gage, then do these steps:
 - (a) Remove the pressure from the transducer.
 - (b) Replace the pressure transducer. These are the tasks:
 - Duct Pressure Transducer Removal, AMM TASK 36-21-01-000-801
 - Duct Pressure Transducer Installation, AMM TASK 36-21-01-400-801

NOTE: The nitrogen source and the test gage should still be connected to the flexible sense line.

- (c) Supply 50 psi to the transducer.
- (d) If the applicable pointer on the dual duct pressure indicator agrees within +/-3 psi of the test gage, then do these steps:
 - 1) Remove the pressure.
 - 2) Disconnect the test gage.
 - 3) Reconnect the flexible sense line to the pneumatic system duct.
 - Use Never-Seez Pure Nickel Special anti-seize compound (or equivalent) at the connection.
 - 4) Do the Repair Confirmation at the end of this task.
- (e) If the applicable pointer on the dual duct pressure indicator does not agree within +/-3 psi of the test gage, then continue.
- (f) Remove the pressure from the transducer.
- (g) Replace the dual duct pressure indicator. These are the tasks:
 - Dual Duct Pressure Indicator Removal, AMM TASK 36-21-02-600-801
 - Dual Duct Pressure Indicator Installation, AMM TASK 36-21-02-600-802
- (h) Supply 50 psi to the transducer.
- (i) Make sure that the applicable pointer on the dual duct pressure indicator agrees within +/-3 psi of the test gage:
 - 1) If the applicable pointer on the dual duct pressure indicator does not agree within +/-3 psi of the test gage, do these steps:
 - a) Remove the pressure to the transducer.
 - b) Do the Indication Circuit Wiring Fault Isolation Procedure.
 - 2) If the applicable pointer on the dual duct pressure indicator agrees within +/-3 psi of the test gage, then do the Repair Confirmation at the end of this task.
- (8) If the applicable pointer on the dual duct pressure indicator agrees within +/-3 psi of the test gage, then continue.
- (9) Do the above steps, as applicable, to examine the precision of the pressure transducer on the other pneumatic indication system.

G. Indication Circuit Wiring - Fault Isolation Procedure

NOTE: This procedure is used when circuit breakers have tripped and cannot be reset or components have been replaced and the fault still exists.

SIA ALL

- (1) Do these steps for a check of the indication circuit wiring:
 - (a) If any of the system circuit breakers tripped, isolate and repair the short in the wiring or faulty component.
 - (b) Do a check of the wiring between these components WDM 36-21-11:
 - The load side of circuit breaker C77 on the P6-4 panel and the dual duct pressure indicator. N12
 - As applicable, the load side of circuit breaker C1469 on the P6-4 panel and the right manifold transducer, T403
 - 3) As applicable, the load side of circuit breaker C1470 on the P6-4 panel and the left manifold transducer, T405
 - 4) As applicable, the dual duct pressure indicator and the left manifold transducer, T405, and/or the right manifold transducer, T403.
 - (c) Repair any problems that you find.
 - (d) Do the Repair Confirmation at the end of this task.

H. Repair Confirmation

- (1) Supply pressure to the pneumatic system with one of the steps below:
 - (a) Do this task: Supply Pressure to the Pneumatic System with the APU, AMM TASK 36-00-00-860-803.
 - (b) Do this task: Supply Pressure to the Pneumatic System with an External Ground Air Source, AMM TASK 36-00-00-860-802.
- (2) Examine the dual pressure indicator, N12, on the P5-10 air conditioning panel as follows:
 - (a) Make sure that the duct pressure pointers on both sides are within 3 psi of each other.
 - 1) If the duct pressure pointers on both sides are within 3 psi of each other, then you corrected the fault.
 - 2) If the duct pressure pointers on both sides are not within 3 psi of each other, then return to the step you were at in the Initial Evaluation or Fault Isolation Procedure and continue.
- (3) Remove pressure from the pneumatic system:
 - (a) Do this task: Remove Pressure from the Pneumatic System, AMM TASK 36-00-00-860-806.

	END	OF TAS	sk	_
--	------------	--------	----	---

809. QUICK FIM TASK - Bleed Trip, the Engine is the Bleed Source - Fault Isolation

A. Description

- (1) This is a QUICK FIM TASK. It is designed to quickly isolate the most common faulty components for Bleed Trip based on operator experience. If no resolution can be made by the use of this task, it is recommended that the operator use BLEED TRIP OFF Light ON - Fault Isolation, 36-10 TASK 801.
- (2) SDS SUBJECT 36-11-00, SDS SUBJECT 36-12-00
- (3) Bleed Trip is most often a cooling problem. This Quick FIM Task will concentrate on the cooling aspect of the pneumatic system. This includes the Precooler Control Valve, 390° Sensor and 450° Sensor.

SIA ALL 36-10 TASKS 808-809

- (4) Bleed Trip can be caused by an overpressure situation where too much pressure enters the system via the High Stage Valve. This would only happen at high thrust levels of takeoff and climb. Based on operator experience, it is more likely that a bleed trip is caused by a cooling problem. Because of this, the overpressure scenario is not included in this task.
- (5) A partially stuck open High Stage Valve could cause an over temperature condition that the precooler system cannot cool. This is not considered likely but is possible. Since this is very easy to look at, it is included in this task.
- (6) A faulty 490° overtemperature switch or bleed air regulator overpressure switch could provide a false bleed trip. Damaged wiring or Air Conditioning Accessory Unit (ACAU) could also provide a false bleed trip.
- (7) It is not necessary to accomplish all steps in this Task, however, there may be multiple faults causing low duct pressure and completing this Task is recommended and will ensure all faults are corrected.

B. Possible Causes

- (1) Precooler System
 - (a) Precooler control valve Failure Mode: Valve not modulating correctly or stuck closed.
 - (b) 390° sensor Failure Mode: Sensor is out-of-tolerance, stuck closed or plugged.
 - (c) 450° sensor Failure Mode: Sensor is out of tolerance, stuck closed, or plugged.
 - (d) Kiss seal Failure Mode: Damaged, Foreign Object Debris (FOD), blocked fan airflow.
 - (e) Precooler Failure Mode: Foreign object debris blocking fan airflow, degraded operational capability.
- (2) High Stage System
 - (a) High Stage Valve Failure Mode: Stuck open butterfly plate.

C. Circuit Breakers

(1) These are the primary circuit breakers related to the fault:

F/O Electrical System Panel, P6-4

<u>Col</u>	<u>Number</u>	<u>Name</u>
5	C00259	AIR CONDITIONING BLEED AIR VALVE ISLN
6	C01470	AIR CONDITIONING BLEED AIR XDCR LEFT
7	C00796	AIR CONDITIONING BLEED AIR VALVES L
5	C00077	AIR CONDITIONING BLEED AIR PRESS IND
6	C01469	AIR CONDITIONING BLEED AIR XDCR RIGHT
7	C00797	AIR CONDITIONING BLEED AIR VALVES R
	6 7 5	5 C00259 6 C01470 7 C00796 5 C00077 6 C01469

D. Related Data

- (1) Component Location (36-10 TASK SUPPORT Figure 301)
- (2) Component Location (36-10 TASK SUPPORT Figure 302)
- (3) Duct Pressure Versus N1 at Sea Level and 5000 Feet Graph (36-10 TASK SUPPORT Figure 305)
- (4) Duct Pressure Versus N1 at Sea Level, 10K, 22K, 31K, 37K and 41K Feet Graph (36-10 TASK SUPPORT Figure 305)
- (5) Troubleshooting Check (36-10 TASK SUPPORT Figure 308)
- (6) Pneumatic System Control Valve Position Indicators (36-10 TASK SUPPORT Figure 311)
- (7) SSM 36-11-11

SIA ALL

(8) WDM 36-11-11

E. Initial Evaluation

(1) Because a bleed trip is most likely a cooling problem, this procedure looks at the cooling system almost exclusively.

Bleed Trip Fault Table Organized by Flight Phase.

CONDI- TION	GROUND/TAXI	TAKEOFF	CLIMB	CRUISE	IDLE/DESCENT
Normal Operation	WTAI OFF-18 to 22 psig WTAI ON 12 to 14 psig HSV: Full OPEN PRSOV: Full OPEN PCCV: CLOSED Engine supply pressure and temperature are below regulation levels.	34 to 50 psig HSV: CLOSED PRSOV: Regulating PCCV: Regulating Engine supply pressure and temperature are being regulated	34 to 50 psig HSV: CLOSED PRSOV: Regulating PCCV: Regulating Engine supply pressure and temperature are being regulated	26 to 50 psig HSV: May be CLOSED or Regulating PRSOV: May be Regulating or OPEN PCCV: May be Regulating or CLOSED At lower cruise settings, engine pressure and temperature may drop below regulated levels.	WTAI OFF - 18 to 25 psig HSV: Full OPEN PRSOV: Full OPEN PCCV: CLOSED Engine supply pressure and temperature are below regulation levels.
Bleed Trip	Supply pressure and temperature are not sufficient to cause a TRIP	Trips immediately on high power - Mid to late takeoff roll-over temperature: - PCCV/390° Sensor, 450° Sensor not operating properly, or plugged 390° or 450° sensor sense lines	Over temperature: - PCCV/390° Sensor, 450° Sensor not operating properly, or plugged 390° or 450° sensor sense lines	Temperature should be below TRIP level but may be above TRIP level PCCV/390 Sensor, 450° Sensor not operating properly, or plugged 390 or 450° sensor sense lines	Top of descent (part power) - Over temperature: - PCCV/390 Sensor, 450° Sensor not operating properly, or plugged 390 or 450° sensor sense lines

F. Fault Isolation Procedure

- (1) Do the following to prepare the airplane for troubleshooting:
 - (a) Make sure that the electrical power on, the applicable engine BLEED Switch is set to ON.
 - 1) If electrical power is not available, supply electrical power.
 - (b) Make sure that there is no pressure in the pneumatic system. This is the task: Remove Pressure from the Pneumatic System, AMM TASK 36-00-00-860-806.
 - (c) Make sure that the fuel shutoff lever for the applicable engine is in the cutoff position.
 - 1) Install DO-NOT-OPERATE tags.

DO ALL OF THE SPECIFIED TASKS IN THE CORRECT SEQUENCE TO OPEN THE THRUST REVERSER. IF YOU DO NOT OBEY THIS INSTRUCTION, INJURIES TO PERSONNEL AND DAMAGE TO EQUIPMENT CAN OCCUR.

(2) Do the following to deactivate the LE Flaps and Slats and thrust reverser.

SIA ALL

- (a) Retract the LE Flaps and Slats if not previously accomplished. This is the task: Leading Edge Flaps and Slats Retraction, AMM TASK 27-81-00-860-804.
- (b) Deactivate the LE Flaps and Slats. This is the task: Leading Edge Flaps and Slats Deactivation, AMM TASK 27-81-00-040-801.
- (c) Deactivate the applicable thrust reverser. This is the task: Thrust Reverser Deactivation For Ground Maintenance, AMM TASK 78-31-00-040-802-F00.
- (d) Open the applicable thrust reverser. This is the task: Open the Thrust Reverser (Selection), AMM TASK 78-31-00-010-801-F00.
- (3) Do the following to check the positions of the PCCV and HSV:
 - (a) Look at the position indicator/manual override nut on the precooler control valve to make sure it is in the OPEN position. Use a dental mirror, STD-3907, if necessary.
 - 1) If the precooler control valve is not open or 30° from full open, replace the valve. These are the tasks:

NOTE: Use compound, D00010 (Alternate: Never-Seez NSBT compound, D00006), on the threads of all fittings when connecting the sense lines.

- Precooler Control Valve Removal, AMM TASK 36-12-02-000-801
- Precooler Control Valve Installation, AMM TASK 36-12-02-400-801
- (b) Look at the position indicator/manual override nut on the high stage valve to make sure it is in the CLOSED position.
 - 1) If the high stage valve is not closed, replace the valve. These are the tasks:

NOTE: Use compound, D00010 (Alternate: Never-Seez NSBT compound, D00006), on the threads of all fittings when connecting the sense lines.

- High Stage Valve Removal, AMM TASK 36-11-06-000-801
- High Stage Valve Installation, AMM TASK 36-11-06-400-801
- (4) Do the following to prepare for troubleshooting the precooler system.
 - (a) Connect a nitrogen pressure source, STD-1455, pressure regulator, STD-1454, to supply pressure tee for PCCV as shown in 36-10 TASK SUPPORT Figure 312, View B.
 - (b) Remove the cap on the precooler control valve control line and install a gage with needle valve as shown in 36-10 TASK SUPPORT Figure 312, View C.
 - (c) Adjust the regulator on the nitrogen pressure source, STD-1455, to provide 130–250 psi (9–17 Bar or 900-1700 kPa) to the pressure regulator, STD-1454.
- (5) Do the following to test the precooler control valve.
 - (a) Slowly adjust the regulator installed in 36-10 TASK SUPPORT Figure 312, View B to provide 70-75 psi.
 - 1) Make sure that the control pressure (Pc) gauge, installed in 36-10 TASK SUPPORT Figure 312, View C, shows that the control pressure (Pc) as:

SIA ALL; All 737NG Airplanes with PCCV P/N 3289562

a) 6 psig - 11 psig.

SIA ALL; All 737NG Airplanes with PCCV P/N 63292146

b) 9 psig - 27 psig.

36-10 TASK 809

Page 290 Jun 15/2023

SIA ALL; All 737NG Airplanes with PCCV P/N 3289562

2) If control pressure (Pc) is less than 6 psig, check the control pressure sense lines for leaks and fix all leaks found. If control pressure (Pc) is still less than 6 psig, replace the precooler control valve. These are the tasks:

NOTE: Use compound, D00010 (Alternate: Never-Seez NSBT compound, D00006), on the threads of all fittings when connecting the sense lines.

- Precooler Control Valve Removal, AMM TASK 36-12-02-000-801
- Precooler Control Valve Installation, AMM TASK 36-12-02-400-801
- 3) If control pressure (Pc) is greater than 11 psig, replace the precooler control valve. These are the tasks:

NOTE: Use compound, D00010 (Alternate: Never-Seez NSBT compound, D00006), on the threads of all fittings when connecting the sense lines.

- Precooler Control Valve Removal, AMM TASK 36-12-02-000-801
- Precooler Control Valve Installation, AMM TASK 36-12-02-400-801

SIA ALL; All 737NG Airplanes with PCCV P/N 63292146

4) If control pressure (Pc) is less than 9 psig, check the control pressure sense lines for leaks and fix all leaks found. If control pressure (Pc) is still less than 9 psig, replace the precooler control valve. These are the tasks:

NOTE: Use compound, D00010 (Alternate: Never-Seez NSBT compound, D00006), on the threads of all fittings when connecting the sense lines.

- Precooler Control Valve Removal, AMM TASK 36-12-02-000-801
- Precooler Control Valve Installation, AMM TASK 36-12-02-400-801
- 5) If control pressure (Pc) is greater than 27 psig, replace the precooler control valve. These are the tasks:

NOTE: Use compound, D00010 (Alternate: Never-Seez NSBT compound, D00006), on the threads of all fittings when connecting the sense lines.

- Precooler Control Valve Removal, AMM TASK 36-12-02-000-801
- Precooler Control Valve Installation, AMM TASK 36-12-02-400-801

SIA ALL

- (b) Slowly open the needle shutoff valve to reduce the control pressure (Pc). Use a dental mirror if necessary and watch the precooler control valve position indicator.
- (c) Make sure that the precooler control valve position indicator moves fully open or to within 30° of fully open when control pressure (Pc) is 3 psig or greater.
 - 1) If the precooler control valve did not move fully open or to within 30° of fully open when the control pressure (Pc) was 3 psig or greater, then replace the precooler control valve. These are the tasks:

NOTE: Use compound, D00010 (Alternate: Never-Seez NSBT compound, D00006), on the threads of all fittings when connecting the sense lines.

- Precooler Control Valve Removal, AMM TASK 36-12-02-000-801
- Precooler Control Valve Installation, AMM TASK 36-12-02-400-801
- (d) Close needle valve.

36-10 TASK 809

EFFECTIVITY

- (6) Remove test equipment from the engine and restore all connections.
 - NOTE: Use compound, D00010 (Alternate: Never-Seez NSBT compound, D00006), on the threads of all fittings when connecting the sense lines.
- (7) If no faults were found, the problem could be with the following parts:
 - (a) 390° Sensor and 450° Sensor
 - (b) Kiss Seal
 - (c) Precooler
 - (d) 490° Overtemperature Switch
 - (e) Wiring faults
 - (f) ACAU
- (8) Check the kiss seal for deformation.
 - (a) Make sure that it makes a proper seal between the precooler control valve and the precooler.
 - (b) If the kiss seal is deformed or has gaps that would allow fan air to escape, or is otherwise not installed correctly, replace the kiss seal.
- (9) Move the kiss seal and check the precooler inlet for obstructions.
 - (a) Remove any obstructions found.
- (10) There is no procedure to test the 390° and 450° sensors. Because all else has shown to be good, replace the 390° and 450° sensors. These are the tasks:
 - NOTE: Use compound, D00010 (Alternate: Never-Seez NSBT compound, D00006), on the threads of all fittings when connecting the sense lines.
 - Precooler Control Valve Sensor Removal, AMM TASK 36-12-03-000-801
 - Precooler Control Valve Sensor Installation, AMM TASK 36-12-03-400-801
 - Thermostat Removal, AMM TASK 36-11-05-000-801
 - Thermostat Installation, AMM TASK 36-11-05-400-801
- (11) If the airplane has another report of a bleed trip, please refer to BLEED TRIP OFF Light ON Fault Isolation, 36-10 TASK 801.

—— END OF TASK ——

810. QUICK FIM TASK - Duct Pressure Low, the Engine is the Bleed Source - Fault Isolation

A. Description

EFFECTIVITY

- (1) This is a QUICK FIM TASK. It is designed to quickly isolate the most common faulty components for low duct pressure based on operator experience. If no resolution can be made by the use of this task, it is recommended that the operator use Duct Pressure Low, the Engine is the Bleed Source - Fault Isolation, 36-10 TASK 804.
- (2) SDS SUBJECT 36-11-00, SDS SUBJECT 36-12-00

36-10 TASKS 809-810

SIA ALL

Page 292 Jun 15/2023

- (3) Low duct pressure is conditional based on the phase of flight, altitude, and throttle settings. Using 36-10 TASK SUPPORT Figure 305, the technician can determine whether a pilot report of low duct pressure is a real fault or within normal operational tolerances.
 - NOTE: Recommended ACMS low duct pressure alert for regulated 5th stage area is duct pressure less than 28 psi. For regulated 9th stage area, the low pressure alert is duct pressure less than 22 psi (Service Letter 36-024). If duct pressure is less than the normal operating limits for the regulated 5th and 9th stage areas shown on FIM 36–10 Task Support Figure 305, but equal to or greater than the recommended alert limits, maintenance action can be deferred until duct pressure is below the recommended alert limits.
- (4) If phase of flight is known, a determination of which part of the pneumatic system may be at fault and only those items need to have troubleshooting performed. For instance, if the phase of flight is takeoff or climb, the high stage regulator and high stage valve should not be operational and they do not need to be tested. If the phase of flight is cruise or descent, then all items in the pneumatic system can be operational and complete system troubleshooting per this task is recommended.
- (5) If phase of flight or altitude and N1 is not known, it is suggested that the operator complete all the troubleshooting in this task.
- (6) It is not necessary to accomplish all steps in this Task, however, there may be multiple faults causing low duct pressure and completing this Task is recommended and will ensure all faults are corrected.

B. Possible Causes

- (1) Precooler System Temperature
 - (a) Precooler control valve Failure Mode: Valve not modulating correctly or stuck closed.
 - (b) 390° sensor Failure Mode: Sensor is out-of-tolerance, stuck closed or plugged.
 - (c) Kiss seal Failure Mode: Damaged, Foreign Object Debris (FOD), blocked fan airflow.
 - (d) Precooler Failure Mode: Foreign object debris blocking fan airflow, degraded operational capability.
- (2) Pressure Regulating System
 - (a) PRSOV Failure Mode: Sticking butterfly valve or leaky control pressure side.
 - (b) Bleed Air Regulator Failure Mode: regulates control pressure too low.
 - (c) 450° Sensor Failure Mode: Out of tolerance or failed open.
- (3) High Stage System

SIA ALL

- (a) High Stage Valve Failure Mode: Sticking butterfly valve or leaky control pressure side.
- (b) High Stage Regulator Failure Mode: regulates control pressure too low.
- (4) Leaky Sense Lines or Fittings.
 - (a) Failure Mode: loose connections or damaged lines.
 - 1) PRSOV control pressure line from bleed air regulator to PRSOV and 450° F thermostat line (5th and 9th stage operation).
 - 2) Supply line to the bleed air regulator (5th and 9th stage operations).
 - 3) Control pressure line between the high stage regulator and high stage valve (9th stage operation).
 - 4) Supply pressure line to high stage regulator (9th stage operations).

36-10 TASK 810

Page 293 Jun 15/2023

5) Transducer sense line: low duct pressure APU and engines (all phases of operation).

C. Circuit Breakers

(1) These are the primary circuit breakers related to the fault:

F/O Electrical System Panel, P6-4

Row	<u>Col</u>	Number	<u>Name</u>
Α	5	C00259	AIR CONDITIONING BLEED AIR VALVE ISLN
Α	6	C01470	AIR CONDITIONING BLEED AIR XDCR LEFT
Α	7	C00796	AIR CONDITIONING BLEED AIR VALVES L
В	5	C00077	AIR CONDITIONING BLEED AIR PRESS IND
В	6	C01469	AIR CONDITIONING BLEED AIR XDCR RIGHT
В	7	C00797	AIR CONDITIONING BLEED AIR VALVES R

D. Related Data

- (1) Component Location (36-10 TASK SUPPORT Figure 301)
 QU
- (2) Component Location (36-10 TASK SUPPORT Figure 302)
- (3) Duct Pressure Versus N1 at Sea Level and 5000 Feet Graph (36-10 TASK SUPPORT Figure 305)
- (4) Duct Pressure Versus N1 at Sea Level, 10K, 22K, 31K, 37K and 41K Feet Graph (36-10 TASK SUPPORT Figure 305)
- (5) Troubleshooting Check (36-10 TASK SUPPORT Figure 308)
- (6) Pneumatic System Control Valve Position Indicators (36-10 TASK SUPPORT Figure 311)
- (7) SSM 36-11-11
- (8) WDM 36-11-11

E. Initial Evaluation

(1) Use the table below as a reference guide to possible causes and effects of low duct pressure.

Low Duct Pressure Fault Table Organized by Flight Phase.

CONDITION	GROUND/TAXI	TAKEOFF	CLIMB	CRUISE	IDLE/DESCENT
Normal Operation	WTAI OFF-18 to 22 psig WTAI ON 12 to 14 psig HSV: Full OPEN PRSOV: Full OPEN PCCV: CLOSED Engine supply pressure and temperature are below regulation levels		34 to 50 psig HSV: CLOSED PRSOV: Regulating PCCV: Regulating Engine supply pressure and temperature are being regulated	26 to 50 psig HSV: May be CLOSED or Regulating PRSOV: May be Regulating or OPEN PCCV: May be Regulating or CLOSED At lower cruise settings, engine pressure and temperature may drop below regulated levels.	WTAI OFF - 18 to 25 psig HSV: Full OPEN PRSOV: Full OPEN PCCV: CLOSED Engine supply pressure and temperature are below regulation levels.

SIA ALL

36-10 TASK 810

Page 294 Jun 15/2023

Low Duct Pressure Fault Table Organized by Flight Phase. (Continued)

CONDITION	GROUND/TAXI	TAKEOFF	CLIMB	CRUISE	IDLE/DESCENT
Bleed Pressure Low	Most likely a High Stage system Fault. Go to Quick FIM Task 810, Step F.2.c, and 7, 8, and 9	Most likely a cooling problemPrecooler Control Valve not modulating open properly causing high temps, go to Quick FIM 810 Step, F.2.a, and steps 3-4 - BAR, PRSOV, or sense line leak, go to Quick FIM 810 Step, F.2.b, and steps 3 and 5.	Most likely a cooling problemPrecooler Control Valve not modulating open properly causing high temps, go to Quick FIM 810 Step, F.2.a, and steps 3-4 - BAR, PRSOV, or sense line leak, go to Quick FIM 810 Step, F.2.b, and steps 3 and 5.	Low duct pressure could be caused by a cooling problem, a PRSOV problem, or a High Stage system problem. It is recommended to complete Quick FIM Task 810.	Low duct pressure could be caused by a cooling problem, a PRSOV problem, or a High Stage system problem. It is recommended to complete Quick FIM Task 810.

- (2) If the pilot report includes the low duct pressure value, the altitude, and the N1 engine speed at the time of the low duct pressure, you can use 36-10 TASK SUPPORT Figure 305 sheet 2 of 2 to determine if the report of low duct pressure is valid. If the pressure is within tolerance, then there is no fault.
- (3) Because the PRSOV has a tolerance of 34-50 psi and the High Stage Valve has a tolerance of 26-38 psi, a low pressure that is noted by flight crew that is 34 psi or above, is not considered a low duct pressure. See 36-10 TASK SUPPORT Figure 305 to determine stage of operation if possible.
- (4) If the low duct pressure report is valid, it is more often the case that it is a result of a cooling problem. This would indicate that the 450° sensor is working properly. Therefore the precooler control valve and/or the 390° sensor are not working properly in most cases.

F. Fault Isolation Procedure

- (1) Do the following to prepare the airplane for troubleshooting:
 - (a) Make sure that the electrical power on, the applicable engine BLEED Switch is set to ON.
 - If electrical power is not available, supply electrical power.
 - (b) Make sure that there is no pressure in the pneumatic system. This is the task: Remove Pressure from the Pneumatic System, AMM TASK 36-00-00-860-806.
 - (c) Make sure that the fuel shutoff lever for the applicable engine is in the cutoff position.
 - 1) Install DO-NOT-OPERATE tags.

DO ALL OF THE SPECIFIED TASKS IN THE CORRECT SEQUENCE TO OPEN THE THRUST REVERSER. IF YOU DO NOT OBEY THIS INSTRUCTION, INJURIES TO PERSONNEL AND DAMAGE TO EQUIPMENT CAN OCCUR.

- (2) Do the following to deactivate the LE Flaps and Slats and thrust reverser.
 - (a) Retract the LE Flaps and Slats if not previously accomplished. This is the task: Leading Edge Flaps and Slats Retraction, AMM TASK 27-81-00-860-804.
 - (b) Deactivate the LE Flaps and Slats. This is the task: Leading Edge Flaps and Slats Deactivation, AMM TASK 27-81-00-040-801.

- EFFECTIVITY

SIA ALL

36-10 TASK 810

Page 295 Jun 15/2023

- (c) Deactivate the applicable thrust reverser. This is the task: Thrust Reverser Deactivation For Ground Maintenance, AMM TASK 78-31-00-040-802-F00.
- (d) Open the applicable thrust reverser. This is the task: Open the Thrust Reverser (Selection), AMM TASK 78-31-00-010-801-F00.
- (3) Do the following to check the positions of the PCCV, PRSOV, and HSV:
 - (a) Look at the position indicator/manual override nut on the precooler control valve to make sure it is in the OPEN position. Use a dental mirror, STD-3907, if necessary.
 - 1) If the precooler control valve is not open or 30° from full open, replace the valve. These are the tasks:

NOTE: Use compound, D00010 (Alternate: Never-Seez NSBT compound, D00006), on the threads of all fittings when connecting the sense lines.

- Precooler Control Valve Removal, AMM TASK 36-12-02-000-801
- Precooler Control Valve Installation, AMM TASK 36-12-02-400-801
- (b) Look at the position indicator/manual override nut on the PRSOV to make sure it is in the CLOSED position.
 - 1) If the PRSOV is not closed, replace the PRSOV. These are the tasks:

NOTE: Use compound, D00010 (Alternate: Never-Seez NSBT compound, D00006), on the threads of all fittings when connecting the sense lines.

- PRSOV Removal, AMM TASK 36-11-04-000-801
- PRSOV Installation, AMM TASK 36-11-04-400-801
- (c) Look at the position indicator/manual override nut on the High Stage Valve to make sure it is in the CLOSED position.
 - 1) If the high stage valve is not closed, replace the valve. These are the tasks:

NOTE: Use compound, D00010 (Alternate: Never-Seez NSBT compound, D00006), on the threads of all fittings when connecting the sense lines.

- High Stage Valve Removal, AMM TASK 36-11-06-000-801
- · High Stage Valve Installation, AMM TASK 36-11-06-400-801
- (4) Do the following to prepare for troubleshooting the Precooler and PRSOV systems.
 - (a) Connect a nitrogen pressure source, STD-1455, pressure regulator, STD-1454, to supply pressure tee for the bleed air regulator and PCCV as shown in 36-10 TASK SUPPORT Figure 308, View A.
 - (b) Disconnect the control line to the PRSOV and tee in a gage as shown in 36-10 TASK SUPPORT Figure 308, View B.
 - (c) Remove the cap on the precooler control valve control line and install a gage with needle valve as shown in 36-10 TASK SUPPORT Figure 312, View C.
 - (d) Adjust the regulator on the nitrogen pressure source, STD-1455, to provide 130–250 psi (9–17 Bar or 900-1700 kPa) to the pressure regulator, STD-1454.
- (5) Do the following to test the precooler control valve.
 - (a) Slowly adjust the regulator installed in 36-10 TASK SUPPORT Figure 308, View A to provide 70-75 psi.
 - 1) Make sure the control pressure (Pc) gauge, installed in 36-10 TASK SUPPORT Figure 312, View C, shows that the control pressure (Pc) as:

SIA ALL 36-10 TASK 810

SIA ALL; All 737NG Airplanes with PCCV P/N 3289562

a) 6 psig - 11 psig.

SIA ALL; All 737NG Airplanes with PCCV P/N 63292146

b) 9 psig - 27 psig.

SIA ALL; All 737NG Airplanes with PCCV P/N 3289562

2) If control pressure (Pc) is less than 6 psig, check the control pressure sense lines for leaks and fix all leaks found. If control pressure (Pc) is still less than 6 psig, replace the precooler control valve. These are the tasks:

NOTE: Use compound, D00010 (Alternate: Never-Seez NSBT compound, D00006), on the threads of all fittings when connecting the sense lines.

- Precooler Control Valve Removal, AMM TASK 36-12-02-000-801
- Precooler Control Valve Installation, AMM TASK 36-12-02-400-801
- 3) If control pressure (Pc) is greater than 11 psig, replace the precooler control valve. These are the tasks:

NOTE: Use compound, D00010 (Alternate: Never-Seez NSBT compound, D00006), on the threads of all fittings when connecting the sense lines.

- Precooler Control Valve Removal, AMM TASK 36-12-02-000-801
- Precooler Control Valve Installation, AMM TASK 36-12-02-400-801

SIA ALL; All 737NG Airplanes with PCCV P/N 63292146

4) If control pressure (Pc) is less than 9 psig, check the control pressure sense lines for leaks and fix all leaks found. If control pressure (Pc) is still less than 9 psig, replace the precooler control valve. These are the tasks:

NOTE: Use compound, D00010 (Alternate: Never-Seez NSBT compound, D00006), on the threads of all fittings when connecting the sense lines.

- Precooler Control Valve Removal, AMM TASK 36-12-02-000-801
- Precooler Control Valve Installation, AMM TASK 36-12-02-400-801
- 5) If control pressure (Pc) is greater than 27 psig, replace the precooler control valve. These are the tasks:

NOTE: Use compound, D00010 (Alternate: Never-Seez NSBT compound, D00006), on the threads of all fittings when connecting the sense lines.

- Precooler Control Valve Removal, AMM TASK 36-12-02-000-801
- Precooler Control Valve Installation, AMM TASK 36-12-02-400-801

SIA ALL

- (b) With supply pressure still at 70-75, slowly open the needle shutoff valve to reduce the control pressure (Pc). Watch the precooler control valve position indicator. Use a dental mirror, STD-3907, if necessary.
- (c) Make sure the precooler control valve position indicator moves fully open or to within 30° of fully open when control pressure (Pc) is 3 psig or greater.
 - 1) If the precooler control valve did not move fully open or to within 30° of fully open when the control pressure (Pc) was 3 psig or greater, then replace the precooler control valve. These are the tasks:

NOTE: Use compound, D00010 (Alternate: Never-Seez NSBT compound, D00006), on the threads of all fittings when connecting the sense lines.

SIA ALL

- Precooler Control Valve Removal, AMM TASK 36-12-02-000-801
- Precooler Control Valve Installation, AMM TASK 36-12-02-400-801
- (d) Close needle valve.
- (6) Do the following to test the PRSOV system.
 - (a) Increase supply pressure (Ps) to 70-75 psig and check the control pressure (Pc) gage installed in 36-10 TASK SUPPORT Figure 308, View B.
 - (b) Is control pressure (Pc) 20 to 28 psig and the PRSOV fully open?
 - (c) If yes, go to Step 7.

SIA ALL

- (d) If control pressure is less than 20 psi, check all of the control pressure lines for leaks.
 - 1) If leaks are found, reduce supply pressure to 0 psi and fix the leaks.
- (e) Increase supply pressure to 70-75 psi. Make sure control pressure is 20-28 psi.
 - 1) If control pressure is between 20-28 psi, go to step 7.
- (f) If control pressure (Pc) is less than 20 psi, reduce supply pressure to 0 psi, disconnect the control pressure (Pc) gauge from the PRSOV and install a cap on the open end of the control pressure (Pc) gauge connection as shown in 36-10 TASK SUPPORT Figure 308, View D.
- (g) Increase supply pressure (Ps) to 70-75 psig and check the control pressure (Pc).
 - If the control pressure (Pc) is 20 to 28 psig, the PRSOV must be replaced. These are the tasks:

NOTE: Use compound, D00010 (Alternate: Never-Seez NSBT compound, D00006), on the threads of all fittings when connecting the sense lines.

- PRSOV Removal, AMM TASK 36-11-04-000-801
- PRSOV Installation, AMM TASK 36-11-04-400-801
- (h) If control pressure (Pc) is less than 20 psi, reduce supply pressure to 0 psi, disconnect the control pressure (Pc) sense line from the PRSOV/450°F thermostat (36-10 TASK SUPPORT Figure 308, View D) and install a cap on the sense line to isolate the 450° sensor.
- (i) Increase supply pressure (Ps) to 70-75 psig and check control pressure (Pc).
 - If control pressure (Pc) is less than 20 psig, replace the bleed air regulator. These are the tasks:

NOTE: Use compound, D00010 (Alternate: Never-Seez NSBT compound, D00006), on the threads of all fittings when connecting the sense lines.

- Bleed Air Regulator Removal, AMM TASK 36-11-03-000-801
- Bleed Air Regulator Installation, AMM TASK 36-11-03-400-801
- 2) If control pressure (Pc) is 20 to 28 psig, the sense lines to the 450° sensor need to be checked. If there are leaks, fix the leaks. If there are no leaks, replace the 450° sensor. These are the tasks:

NOTE: Use compound, D00010 (Alternate: Never-Seez NSBT compound, D00006), on the threads of all fittings when connecting the sense lines.

- Thermostat Removal, AMM TASK 36-11-05-000-801
- Thermostat Installation, AMM TASK 36-11-05-400-801

- (7) Remove test equipment from the engine and restore all connections.
 - NOTE: Use compound, D00010 (Alternate: Never-Seez NSBT compound, D00006), on the threads of all fittings when connecting the sense lines.
- (8) Do the following to prepare for troubleshooting the high stage system.
 - (a) Set up test equipment as shown in 36-10 TASK SUPPORT Figure 308, View F.
 - 1) Hook up to supply pressure (Ps) for high stage regulator and control pressure (Pc) for high stage valve.

NOTE: A union will be needed to connect the test line to the supply pressure sense line. Do not connect the test line to the duct.

- (9) Do the following to test the high stage system.
 - (a) Increase supply pressure (Ps) to 70-75 psig. If control pressure (Pc) is 14 -18 psig, go to Step 10.
 - (b) If control pressure is above 18 psig, replace HSR. These are the tasks:

NOTE: Use compound, D00010 (Alternate: Never-Seez NSBT compound, D00006), on the threads of all fittings when connecting the sense lines.

- High Stage Regulator Removal, AMM TASK 36-11-07-000-801
- High Stage Regulator Installation, AMM TASK 36-11-07-400-801
- (c) If control pressure is below 14 psi, check all of the control pressure lines for leaks.
 - 1) If leaks are found, reduce supply pressure to 0 psi and fix the leaks.
- (d) Increase supply pressure (Ps) to 70-75 psig. If control pressure (Pc) is below 14 psig, disconnect the control pressure (Pc) gauge connection from the high stage valve.
- (e) Install a cap or plug with a 0.032 in. (0.813 mm) hole to the open end of the control pressure (Pc) gauge connection.

NOTE: The cap or plug with the 0.032 in. (0.813 mm) hole allows the high stage regulator to properly regulate the control pressure (Pc) for this procedure. It can be made by taking a cap or plug and drilling a hole using a number 67 drill bit.

- (f) Increase supply pressure (Ps) to 70-75 psig.
- (g) If control pressure (Pc) is less than 14 psig, replace the high stage regulator. These are the tasks:

NOTE: Use compound, D00010 (Alternate: Never-Seez NSBT compound, D00006), on the threads of all fittings when connecting the sense lines.

- High Stage Regulator Removal, AMM TASK 36-11-07-000-801
- High Stage Regulator Installation, AMM TASK 36-11-07-400-801
- (h) If control pressure (Pc) is 14 to 18 psig, replace the high stage valve. These are the tasks:

NOTE: Use compound, D00010 (Alternate: Never-Seez NSBT compound, D00006), on the threads of all fittings when connecting the sense lines.

- High Stage Valve Removal, AMM TASK 36-11-06-000-801
- High Stage Valve Installation, AMM TASK 36-11-06-400-801
- (10) Remove troubleshooting equipment and restore all connections.

NOTE: Use compound, D00010 (Alternate: Never-Seez NSBT compound, D00006), on the threads of all fittings when connecting the sense lines.

(11) If no faults were found, the problem could be with the following parts:

SIA ALL

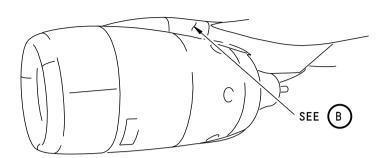
- (a) Kiss Seal
- (b) Precooler
- (c) 390° Sensor
- (d) 450° Sensor
- (e) Pressure transmitter or indicator
- (f) Wiring faults
- (12) Check the kiss seal for deformation.
 - (a) Make sure that it makes a proper seal between the precooler control valve and the precooler.
 - (b) If the kiss seal is deformed or has gaps that would allow fan air to escape, or is otherwise not installed correctly, replace the kiss seal.
- (13) Move the kiss seal and check the precooler inlet for obstructions.
 - (a) Remove any obstructions found.
- (14) There is no procedure to test the 390° and 450° sensors. Because all else has been shown to be good, replace the 390° and 450° sensors. These are the tasks:

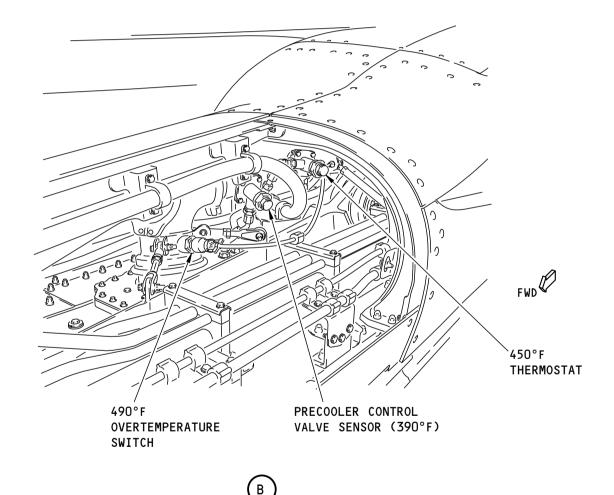

NOTE: Use compound, D00010 (Alternate: Never-Seez NSBT compound, D00006), on the threads of all fittings when connecting the sense lines.

- Thermostat Removal, AMM TASK 36-11-05-000-801
- Thermostat Installation, AMM TASK 36-11-05-400-801
- Precooler Control Valve Sensor Removal, AMM TASK 36-12-03-000-801
- Precooler Control Valve Sensor Installation, AMM TASK 36-12-03-400-801
- (15) If the problem has not been fixed, please refer to Duct Pressure Low, the Engine is the Bleed Source Fault Isolation, 36-10 TASK 804.

——— END OF TASK ———

SIA ALL

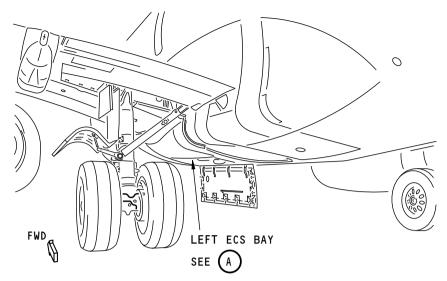


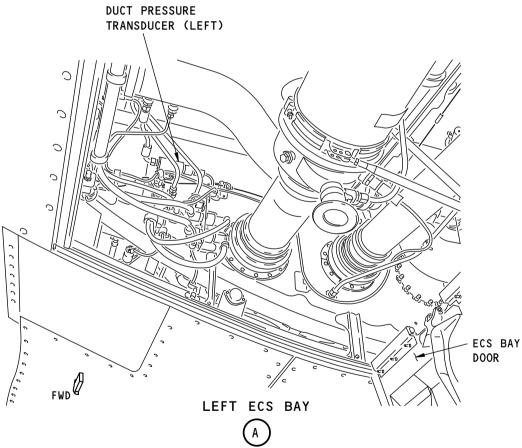

Pneumatic System on the Engine/Strut Component Location Figure 301/36-10-00-990-801 (Sheet 1 of 2)

SIA ALL 36-10 TASK SUPPORT

Page 301 Oct 15/2021

G45780 S0006744849_V1


Pneumatic System on the Engine/Strut Component Location Figure 301/36-10-00-990-801 (Sheet 2 of 2)


SIA ALL

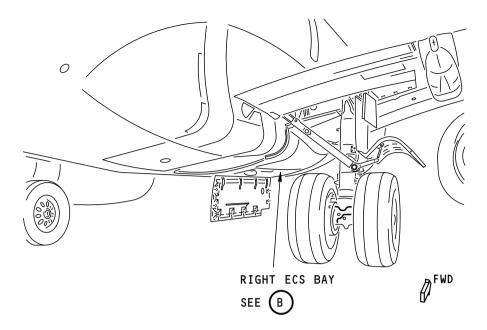
36-10 TASK SUPPORT

Page 302 Oct 15/2021

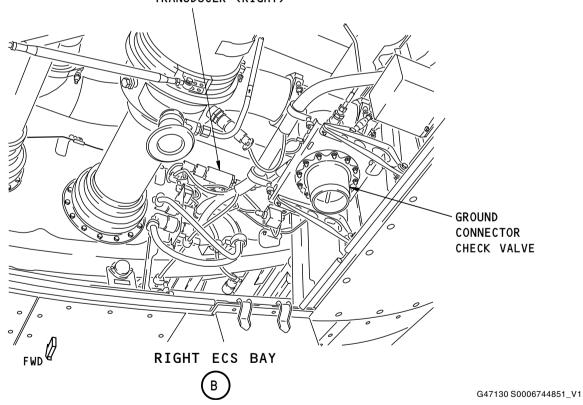
Pneumatic System in the ECS Bay Component Location Figure 302/36-10-00-990-802 (Sheet 1 of 2)

Figure 302/36-10-00-990-602 (Sheet 1 of 2)

- EFFECTIVITY


SIA ALL

36-10 TASK SUPPORT

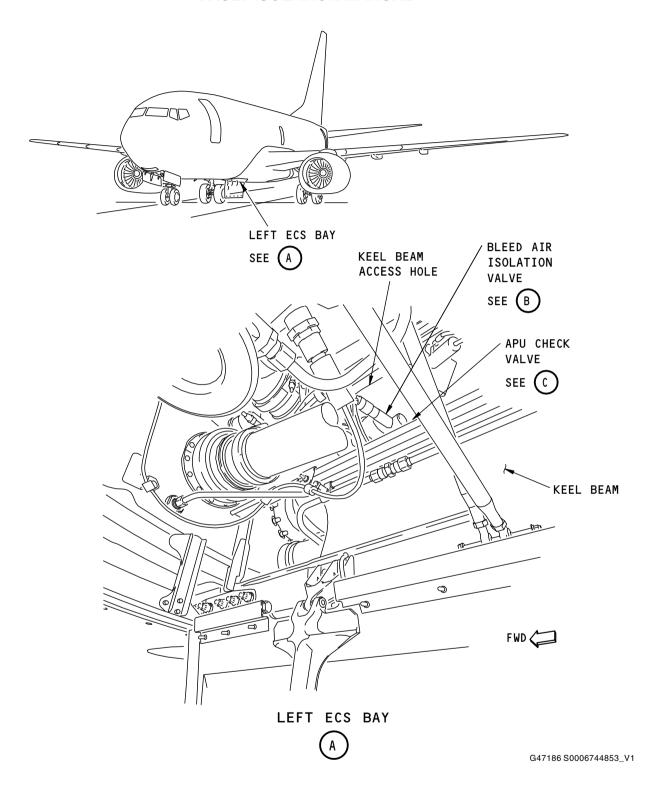

Page 303 Oct 15/2021

G47128 S0006744850_V1

DUCT PRESSURE TRANSDUCER (RIGHT)

Pneumatic System in the ECS Bay Component Location Figure 302/36-10-00-990-802 (Sheet 2 of 2)

Figure 302/30-10-00-990-002 (Sileet 2 of 2)


- EFFECTIVITY

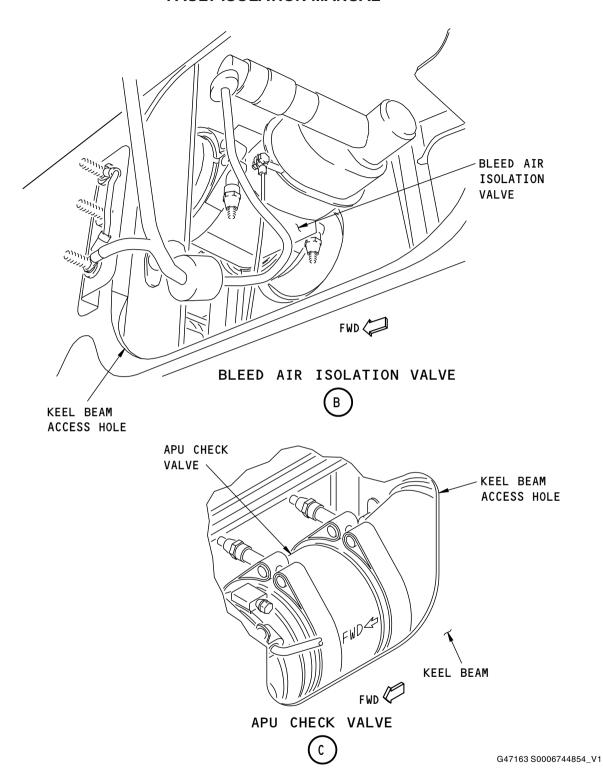
SIA ALL

36-10 TASK SUPPORT

Page 304 Oct 15/2021

Pneumatic System in the Keel Beam Component Location Figure 303/36-10-00-990-803 (Sheet 1 of 2)

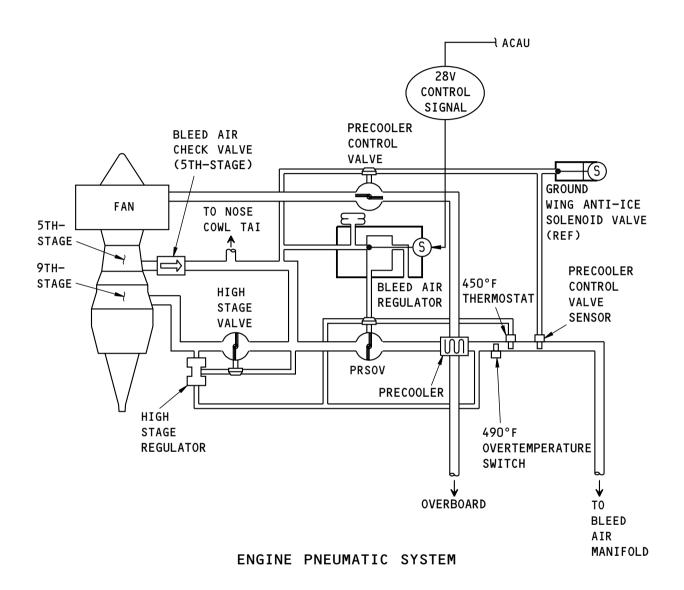
SIA ALL


AG-10 TASK SUPPORT

Page 305

D633A103-SIA

ECCN 9E991 BOEING PROPRIETARY - See title page for details


Pneumatic System in the Keel Beam Component Location Figure 303/36-10-00-990-803 (Sheet 2 of 2)

SIA ALL

A COLD TASK SUPPORT

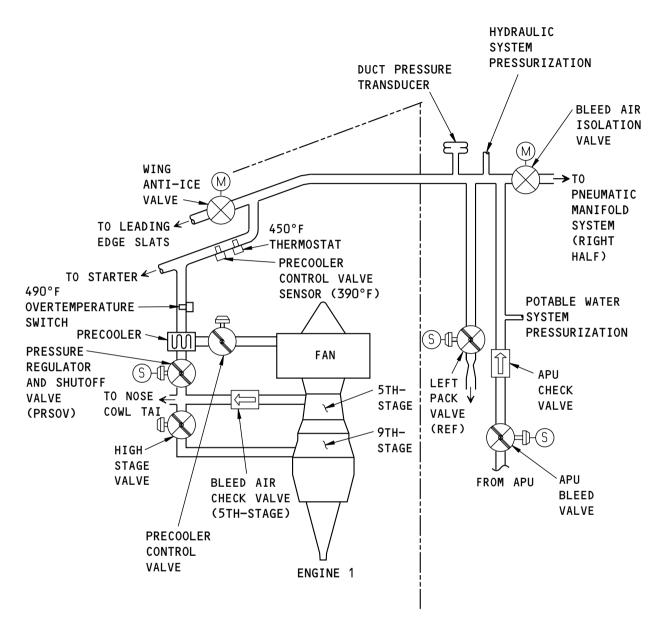
Page 306
D633A103-SIA
ECCN 9E991 BOEING PROPRIETARY - See title page for details

G43678 S0006744855_V1

Pneumatic System Schematic Figure 304/36-10-00-990-804 (Sheet 1 of 3)

SIA ALL

A 6-10 TASK SUPPORT

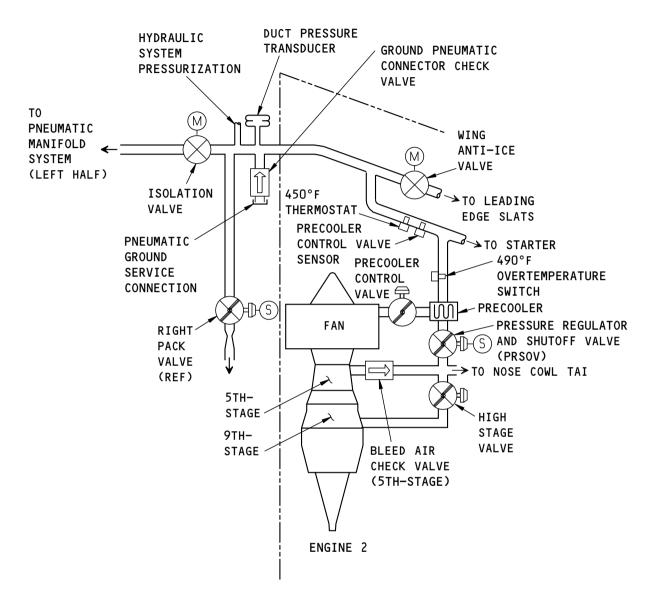

Page 307

D633A103-SIA

ECCN 9E991 BOEING PROPRIETARY - See title page for details

FAULT ISOLATION MANUAL

PNEUMATIC MANIFOLD SYSTEM (LEFT HALF)

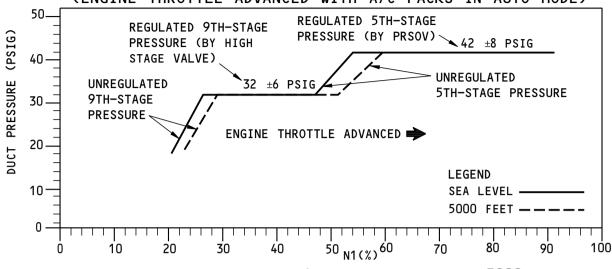

G49426 S0006744856_V1

Pneumatic System Schematic Figure 304/36-10-00-990-804 (Sheet 2 of 3)

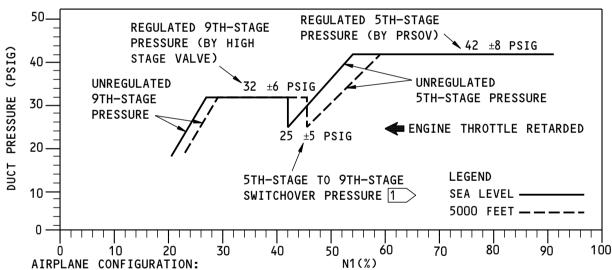
36-10 TASK SUPPORT - EFFECTIVITY **SIA ALL** Page 308 D633A103-SIA Oct 15/2021 ECCN 9E991 BOEING PROPRIETARY - See title page for details

FAULT ISOLATION MANUAL

PNEUMATIC MANIFOLD SYSTEM (RIGHT HALF)


G49700 S0006744858_V1

Pneumatic System Schematic Figure 304/36-10-00-990-804 (Sheet 3 of 3)


36-10 TASK SUPPORT EFFECTIVITY **SIA ALL** Page 309 D633A103-SIA Oct 15/2021 ECCN 9E991 BOEING PROPRIETARY - See title page for details

DUCT PRESSURE VERSUS N1 AT SEA LEVEL AND 5000 FEET (ENGINE THROTTLE ADVANCED WITH A/C PACKS IN AUTO MODE)

DUCT PRESSURE VERSUS N1 AT SEA LEVEL AND 5000 FEET (ENGINE THROTTLE RETARDED WITH A/C PACKS IN AUTO MODE)

ASSOCIATED PACK: AUTO
ASSOCIATED BLEED: ON
ASSOCIATED CTAI: OFF
ISOLATION VALVE: CLOSED

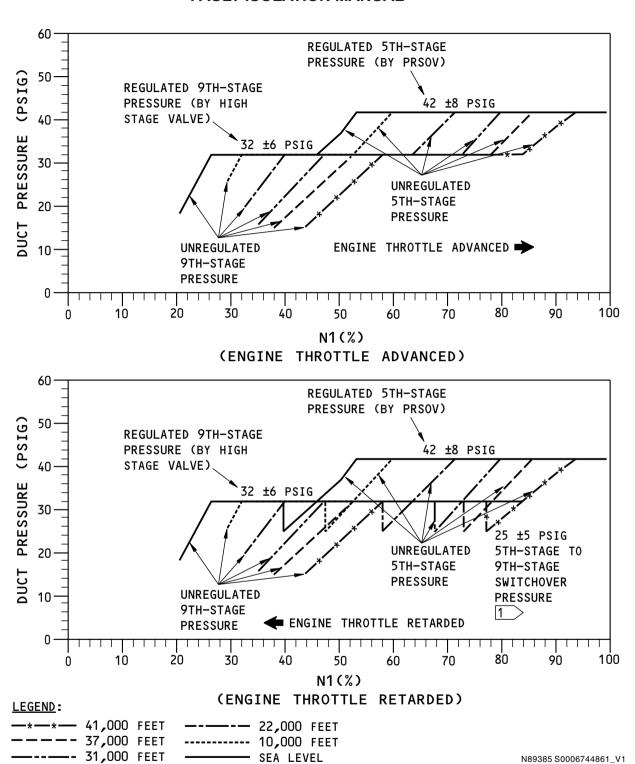
WTAI: OFF

EFFECTIVITY

SIA ALL

WHEN THE ENGINE THROTTLE IS RETARDED AND THE ENGINE BLEED SYSTEM SWITCHOVER OCCUR FROM 5TH-STAGE PRESSURE TO 9TH-STAGE PRESSURE, DUCT PRESSURE CAN DECAY TO AS LOW AS 20 PSIG BEFORE THE HIGH STAGE VALVE OPENS AND REGULATES THE DUCT PRESSURE TO NOMINAL 32 PSIG.

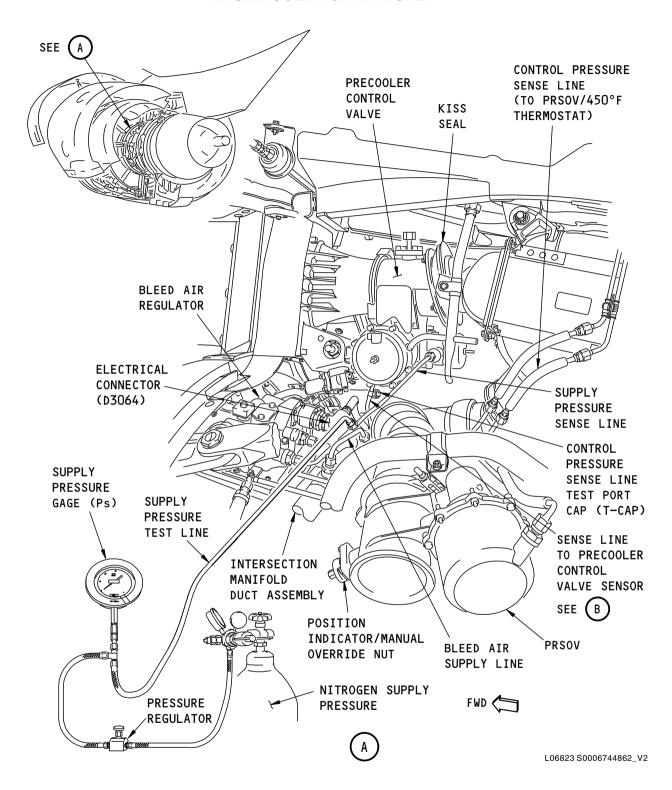
G08869 S0006577919_V2


Duct Pressure Versus N1 at Various Altitudes Figure 305/36-10-00-990-805 (Sheet 1 of 2)

1 igule 303/30-10-00-330-003 (Sileet 1 of 2)

36-10 TASK SUPPORT

Page 310 Oct 15/2021


Duct Pressure Versus N1 at Various Altitudes Figure 305/36-10-00-990-805 (Sheet 2 of 2)

SIA ALL 36-10 TASK SUPPORT

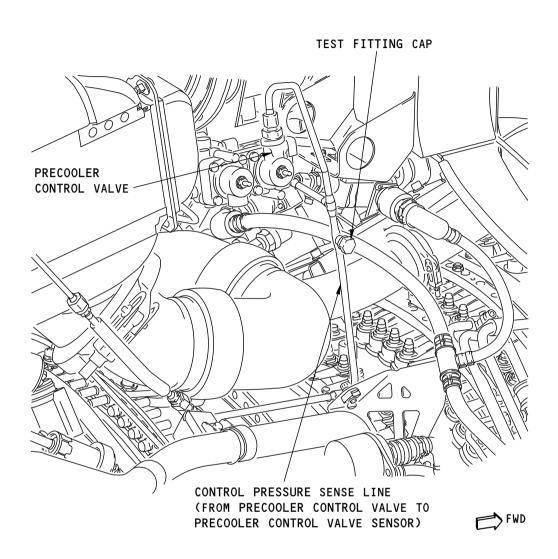
Page 311 Oct 15/2021

D633A103-SIA

Bleed Trip Off Light On. The Engine Is the Bleed Source. Figure 306/36-10-00-990-806 (Sheet 1 of 2)

SIA ALL

36-10 TASK SUPPORT


Page 312

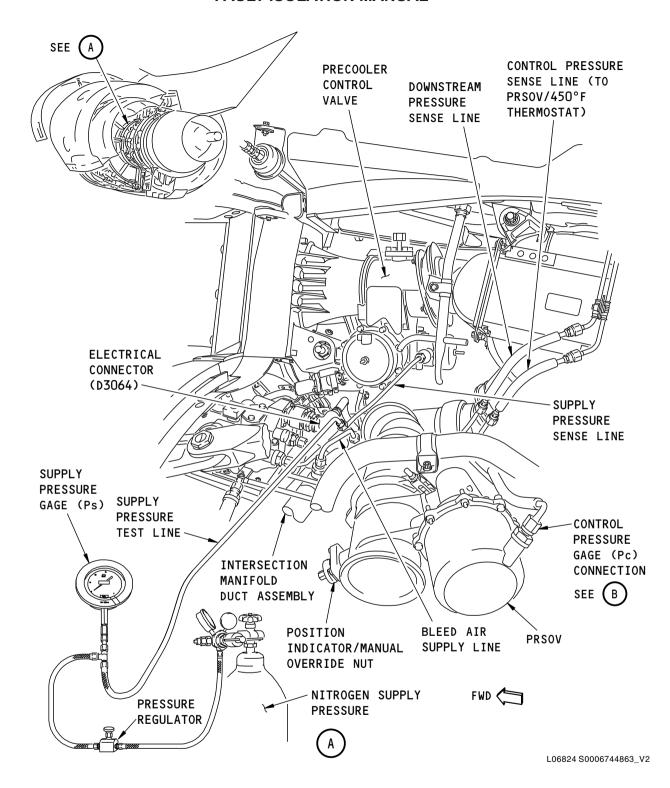
D633A103-SIA

ECCN 9E991 BOEING PROPRIETARY - See title page for details

FAULT ISOLATION MANUAL

CONTROL PRESSURE SENSE LINE

1363445 S0000246231_V1


Bleed Trip Off Light On. The Engine Is the Bleed Source. Figure 306/36-10-00-990-806 (Sheet 2 of 2)

- EFFECTIVITY **SIA ALL**

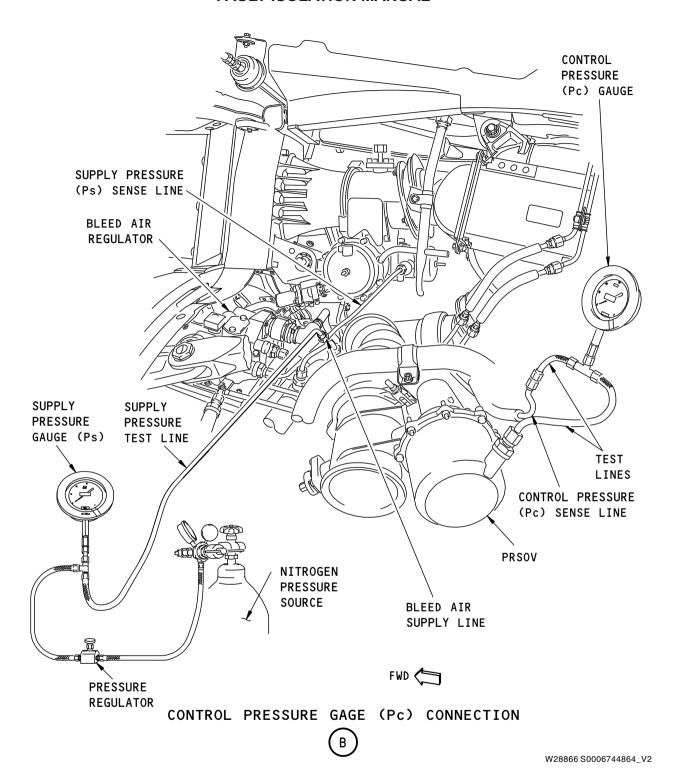
36-10 TASK SUPPORT

Page 313 Oct 15/2021

Duct Pressure High/Bleed Valve Does Not Close When Bleed Switches are Moved to Off. The Engine is the Bleed Source.

Figure 307/36-10-00-990-807 (Sheet 1 of 2)

SIA ALL


36-10 TASK SUPPORT

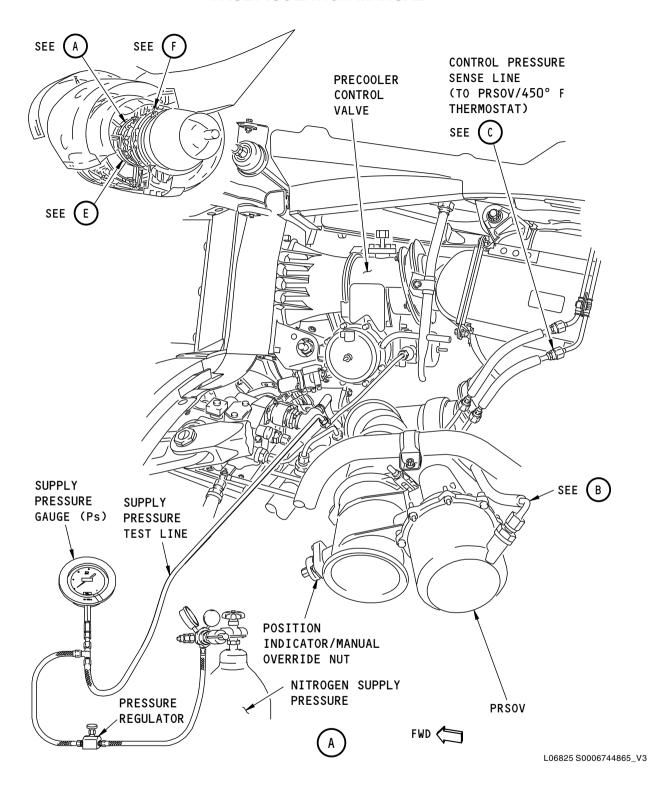
Page 314

D633A103-SIA

ECCN 9E991 BOEING PROPRIETARY - See title page for details

Duct Pressure High/Bleed Valve Does Not Close When Bleed Switches are Moved to Off. The Engine is the Bleed Source.

Figure 307/36-10-00-990-807 (Sheet 2 of 2)


SIA ALL

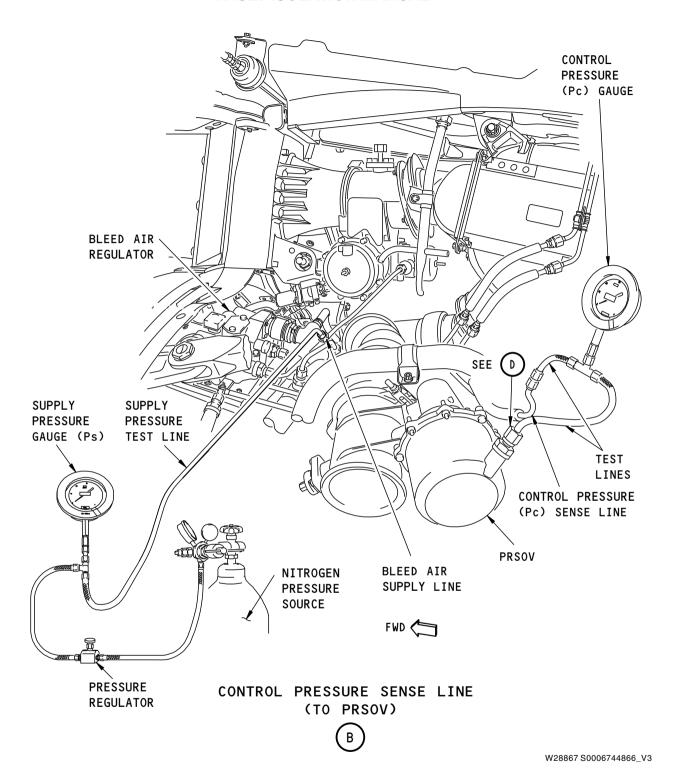
Page 315

D633A103-SIA

ECCN 9E991 BOEING PROPRIETARY - See title page for details

Duct Pressure Low. The Engine is the Bleed Source. Figure 308/36-10-00-990-808 (Sheet 1 of 6)

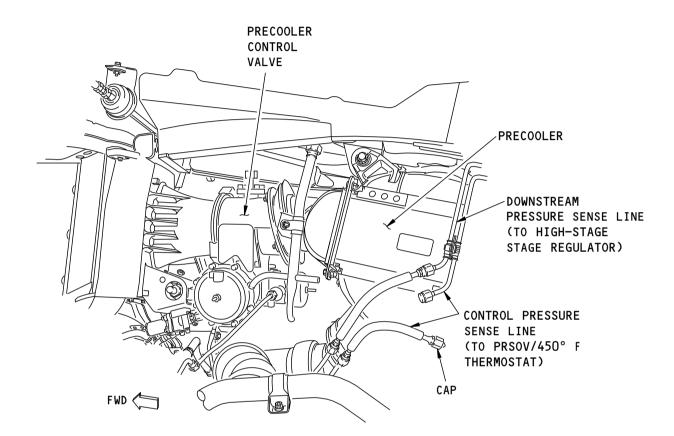
SIA ALL


36-10 TASK SUPPORT

Page 316

D633A103-SIA

ECCN 9E991 BOEING PROPRIETARY - See title page for details


Duct Pressure Low. The Engine is the Bleed Source. Figure 308/36-10-00-990-808 (Sheet 2 of 6)

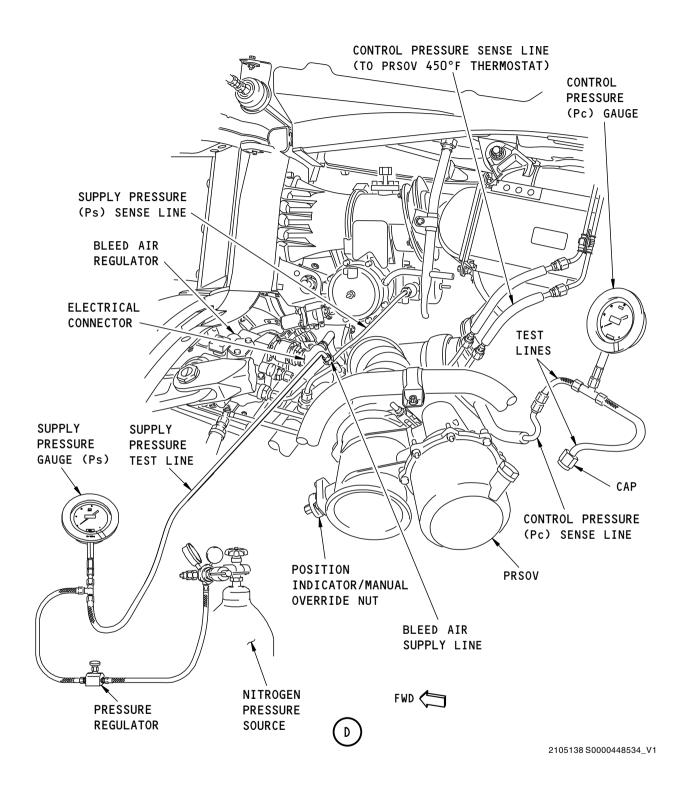
SIA ALL SIA ALL SIA ALL SIA ALL Page 317

D633A103-SIA

Oct 15/2021

CONTROL PRESSURE SENSE LINE WITH CAP

W28869 S0006744870_V3


Duct Pressure Low. The Engine is the Bleed Source. Figure 308/36-10-00-990-808 (Sheet 3 of 6)

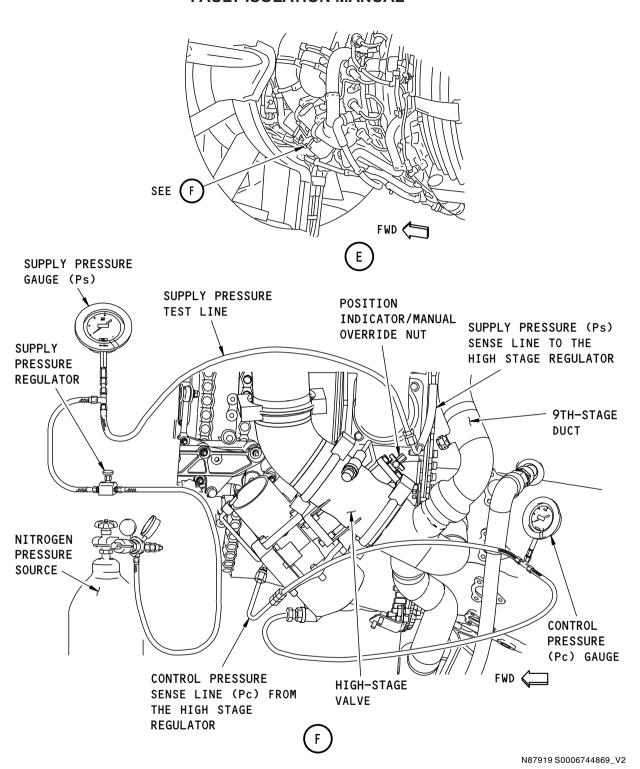
SIA ALL

36-10 TASK SUPPORT

Page 318 Oct 15/2021

Duct Pressure Low. The Engine is the Bleed Source. Figure 308/36-10-00-990-808 (Sheet 4 of 6)

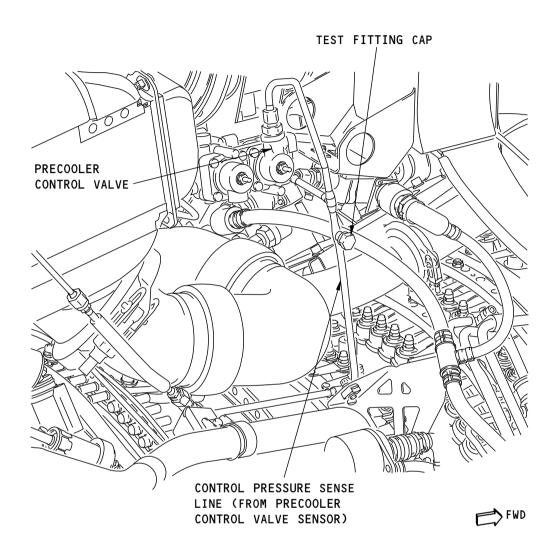
SIA ALL


AG-10 TASK SUPPORT

Page 319

D633A103-SIA

ECCN 9E991 BOEING PROPRIETARY - See title page for details


Duct Pressure Low. The Engine is the Bleed Source. Figure 308/36-10-00-990-808 (Sheet 5 of 6)

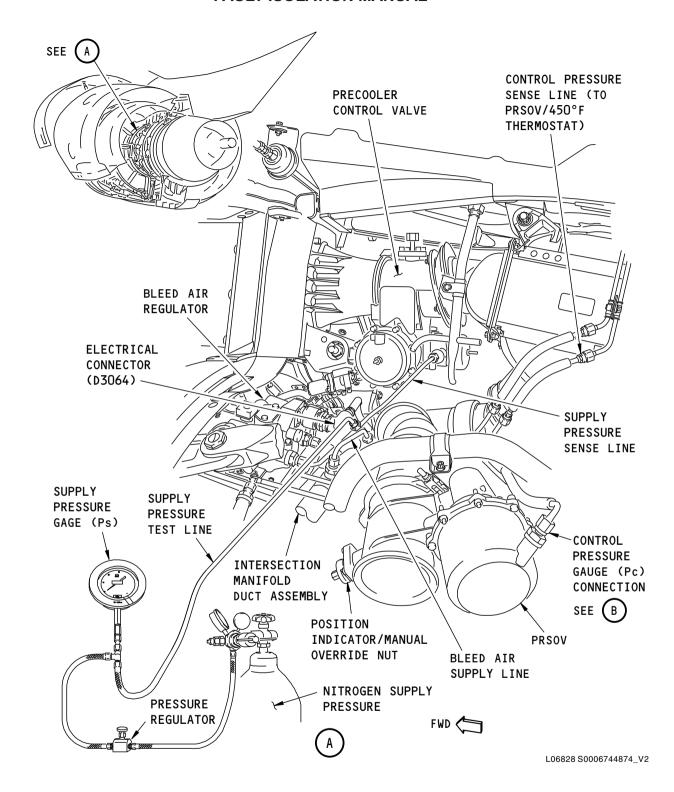
SIA ALL 36-10 TASK SUPPORT

Page 320 Oct 15/2021

FAULT ISOLATION MANUAL

CONTROL PRESSURE SENSE LINE (FROM PRECOOLER CONTROL VALVE SENSOR)

L06827 S0006744867_V2


Duct Pressure Low. The Engine is the Bleed Source. Figure 308/36-10-00-990-808 (Sheet 6 of 6)

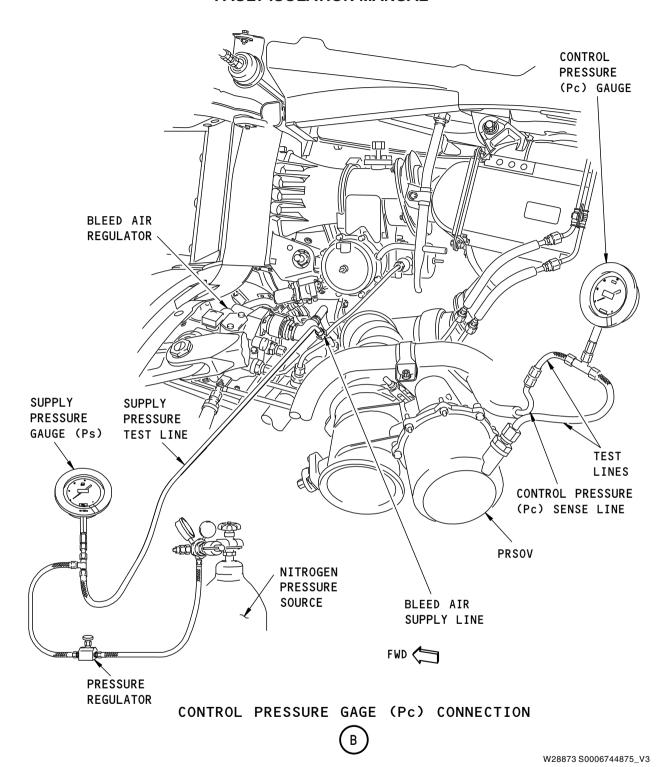
- EFFECTIVITY SIA ALL

36-10 TASK SUPPORT

Page 321 Oct 15/2021

Duct Pressure Zero. The Engine is the Bleed Source. Figure 309/36-10-00-990-809 (Sheet 1 of 2)

SIA ALL


AG-10 TASK SUPPORT

Page 322

D633A103-SIA

ECCN 9E991 BOEING PROPRIETARY - See title page for details

Duct Pressure Zero. The Engine is the Bleed Source. Figure 309/36-10-00-990-809 (Sheet 2 of 2)

SIA ALL 36-10 TASK SUPPORT

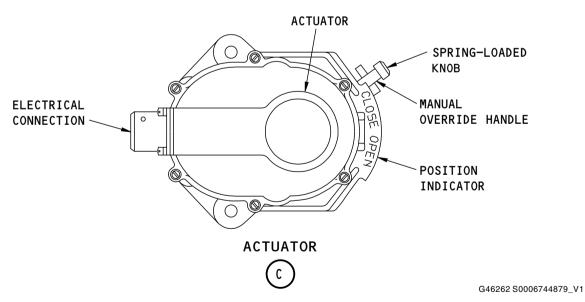
Page 323 Oct 15/2021

D633A103-SIA

Isolation Valve Does Not Open or Close Properly. Figure 310/36-10-00-990-810 (Sheet 1 of 2)

SIA ALL


A GRAND SIA ALL

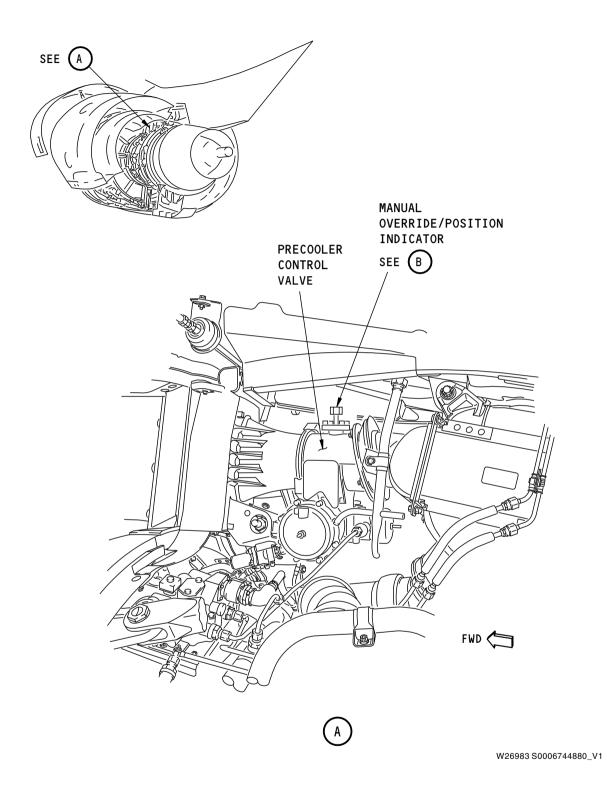

Page 324

D633A103-SIA

ECCN 9E991 BOEING PROPRIETARY - See title page for details

Isolation Valve Does Not Open or Close Properly. Figure 310/36-10-00-990-810 (Sheet 2 of 2)

SIA ALL


A 6-10 TASK SUPPORT

Page 325

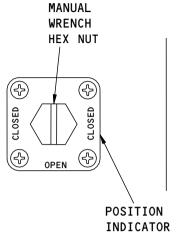
D633A103-SIA

ECCN 9E991 BOEING PROPRIETARY - See title page for details

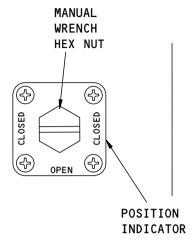
Pneumatic System Control Valve Position Indicators Figure 311/36-10-00-990-811 (Sheet 1 of 6)

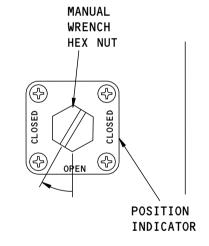
Figure 311/36-10-00-990-811 (Sheet 1 of 6)

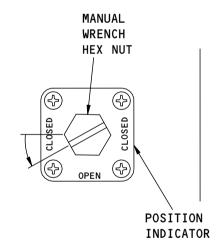
- EFFECTIVITY


SIA ALL

36-10 TASK SUPPORT


Page 326 Oct 15/2021


FAULT ISOLATION MANUAL


FULL OPEN

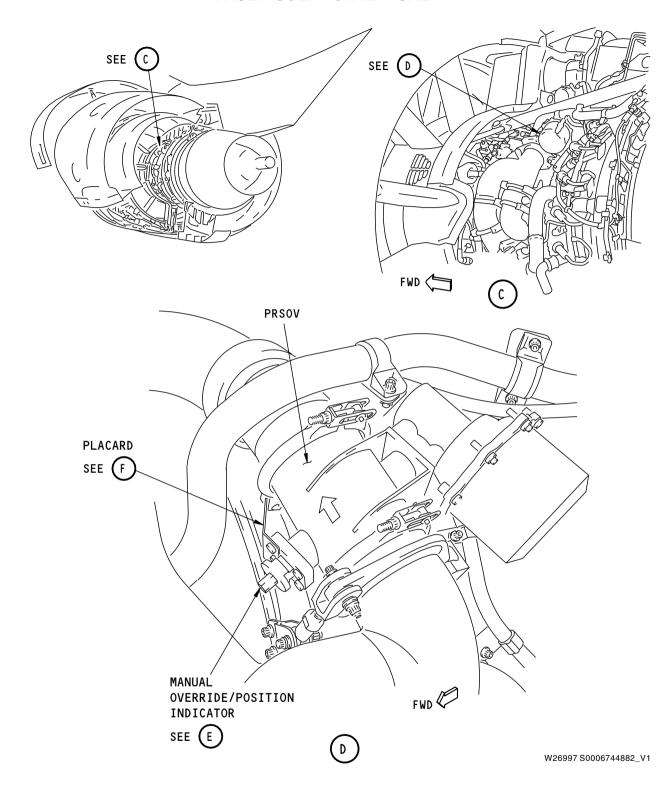
FULL CLOSED

30 DEGREES FROM FULL OPEN

30 DEGREES FROM FULL CLOSED

MANUAL OVERRIDE/POSITION INDICATOR

W26989 S0006744881_V2


Pneumatic System Control Valve Position Indicators Figure 311/36-10-00-990-811 (Sheet 2 of 6)

EFFECTIVITY **SIA ALL**

36-10 TASK SUPPORT

Page 327 Oct 15/2021

Pneumatic System Control Valve Position Indicators Figure 311/36-10-00-990-811 (Sheet 3 of 6)

SIA ALL

36-10 TASK SUPPORT

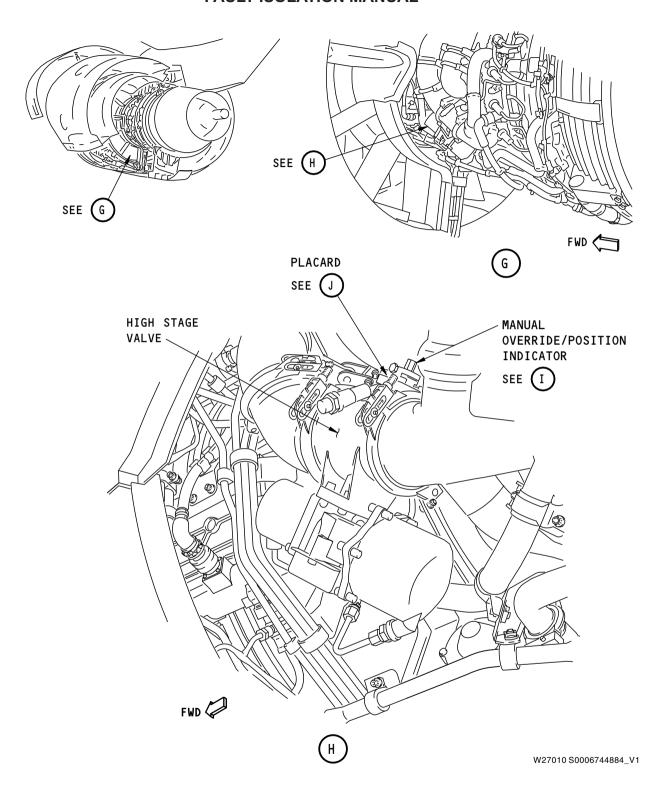
Page 328 Oct 15/2021

MANUAL OVERRIDE/POSITION INDICATOR

NCH SHAFT HEX AS REQD
OCK: LOOSEN KNOB BOLT-90°CCW
CH: PUSH KNOB IN
ATCH: PULL KNOB OUT
K: IGHTEN KNOB BOLT

PLACARD

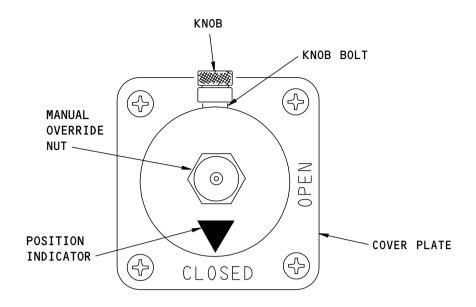
W27013 S0006744883_V1


Pneumatic System Control Valve Position Indicators Figure 311/36-10-00-990-811 (Sheet 4 of 6)

SIA ALL

36-10 TASK SUPPORT

Page 329 Oct 15/2021


Pneumatic System Control Valve Position Indicators Figure 311/36-10-00-990-811 (Sheet 5 of 6)

SIA ALL

36-10 TASK SUPPORT

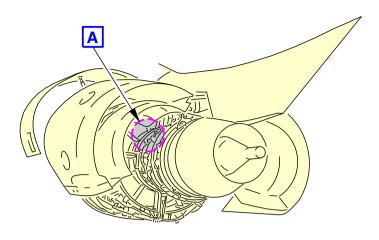
Page 330 Oct 15/2021

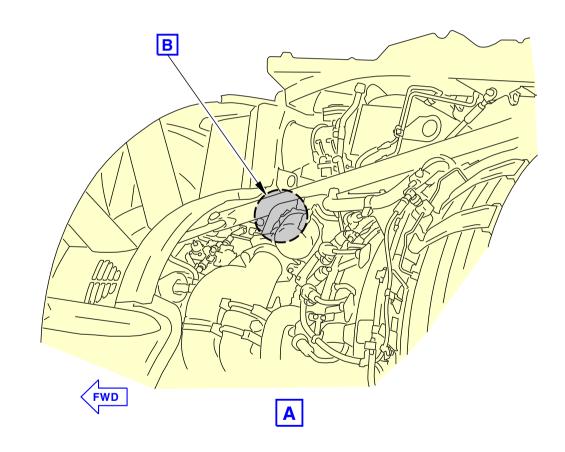
MANUAL OVERIDE/POSITION INDICATOR

WRI	ENCH/LATCH/LOCK
WRI	ENCH SHAFT HEX AS REQD
UNI	LOCK: LOOSEN KNOB BOLT-90°CCW
LA	TCH: PUSH KNOB IN
UNI	LATCH: PULL KNOB OUT
L00	CK: TIGHTEN KNOB BOLT
$\overline{}$	

PLACARD

W27017 S0006744885_V1

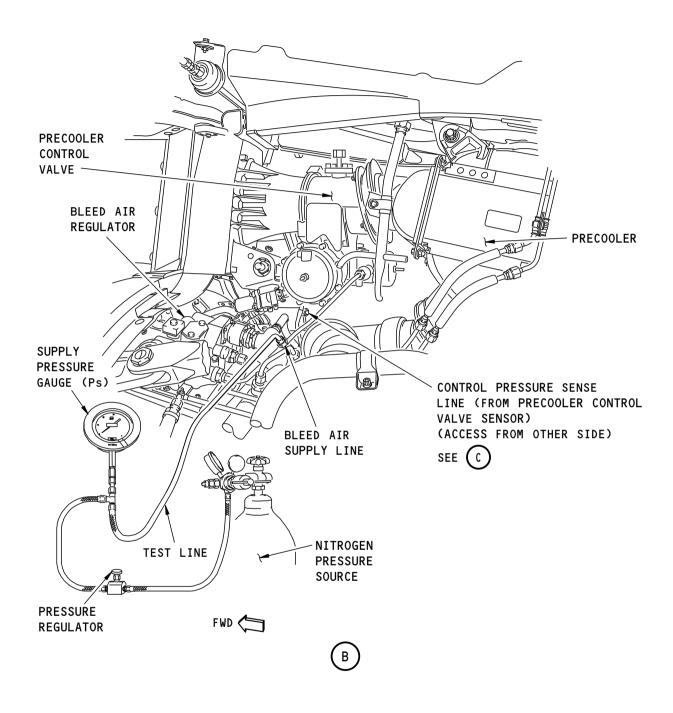

Pneumatic System Control Valve Position Indicators Figure 311/36-10-00-990-811 (Sheet 6 of 6)


SIA ALL

36-10 TASK SUPPORT

Page 331 Oct 15/2021

G15633 S0006577989_V2

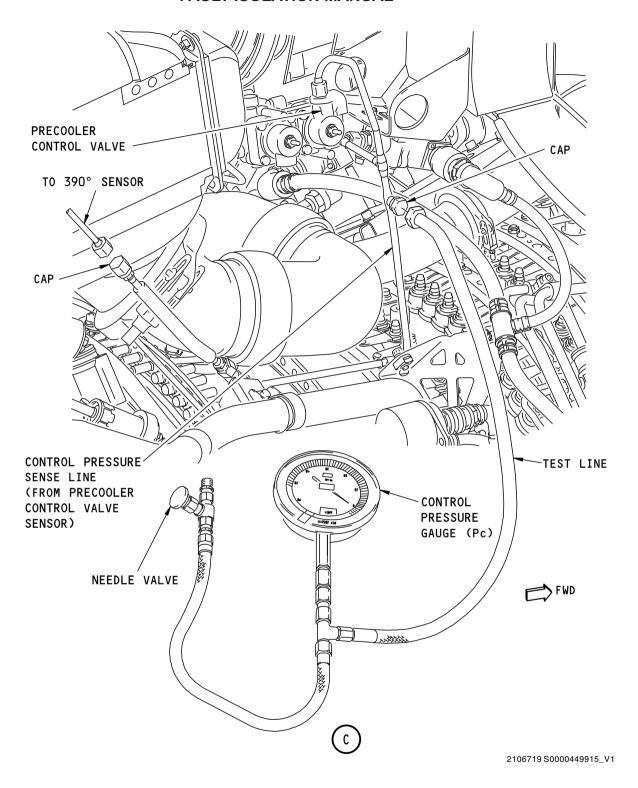

QUICK FIM TASK - Bleed Trip, the Engine is the Bleed Source Figure 312/36-10-00-990-813 (Sheet 1 of 3)

SIA ALL

36-10 TASK SUPPORT

Page 332 Oct 15/2021

2106718 S0000449914_V1

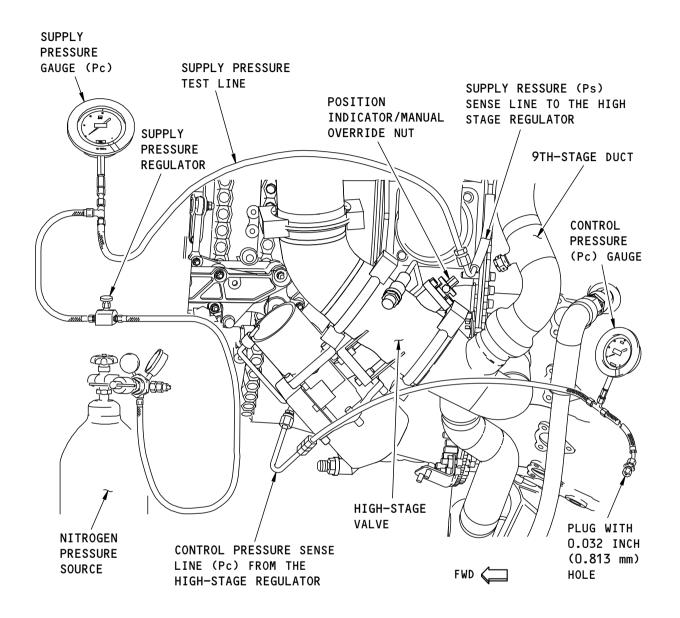

QUICK FIM TASK - Bleed Trip, the Engine is the Bleed Source Figure 312/36-10-00-990-813 (Sheet 2 of 3)

SIA ALL

36-10 TASK SUPPORT

Page 333 Oct 15/2021

QUICK FIM TASK - Bleed Trip, the Engine is the Bleed Source Figure 312/36-10-00-990-813 (Sheet 3 of 3)


SIA ALL

Page 334
D633A103-SIA

D633A103-SIA

ECCN 9E991 BOEING PROPRIETARY - See title page for details

2106729 S0000449927_V1

QUICK FIM TASK - Duct Pressure Low, the Engine is the Bleed Source Figure 313/36-10-00-990-814

SIA ALL

36-10 TASK SUPPORT

Page 335 Oct 15/2021