CHAPTER

Engine

(LEAP-1B ENGINES)

CHAPTER 72 ENGINE

Subject/Page	Date	COC	Subject/Page	Date	COC
72-EFFECTIVE PAGE	ES .				
1	Sep 15/2023				
2	BLANK				
72-CONTENTS					
1	Sep 15/2021				
2	BLANK				
72-00-00					
1	Sep 15/2021				
2	Sep 15/2021				
3	Sep 15/2021				
4	Sep 15/2021				
5	Sep 15/2021				
6	Sep 15/2021				
7	Sep 15/2021				
8	Sep 15/2021				
9	Sep 15/2021				
10	Sep 15/2021				
11	Sep 15/2021				
12	Sep 15/2021				
13	Sep 15/2021				
14	Sep 15/2021				
15	Sep 15/2021				
16	Sep 15/2021				
17	Sep 15/2021				
18	BLANK				

A = Added, R = Revised, D = Deleted, O = Overflow, C = Customer Originated Change

72-EFFECTIVE PAGES

LEAP-1B ENGINES

CHAPTER 72 ENGINE

CH-SC-SU	SUBJECT	PAGE	EFFECT
72-00-00	ENGINE - INTRODUCTION	2	SIAALL
72-00-00	ENGINE - GENERAL DESCRIPTION	5	SIAALL
72-00-00	ENGINE - MAIN ENGINE BEARINGS	8	SIAALL
72-00-00	ENGINE - ENGINE FLANGE LOCATION	10	SIAALL
72-00-00	ENGINE - ENGINE AERODYNAMIC STATIONS	12	SIAALL
72-00-00	ENGINE - ACCESSORY DRIVE - COMPONENT LOCATIONS	14	SIAALL
72-00-00	ENGINE - FAN BLADES AND FRONT SPINNER CONE	16	SIAALL

72-CONTENTS

THIS PAGE IS INTENTIONALLY LEFT BLANK

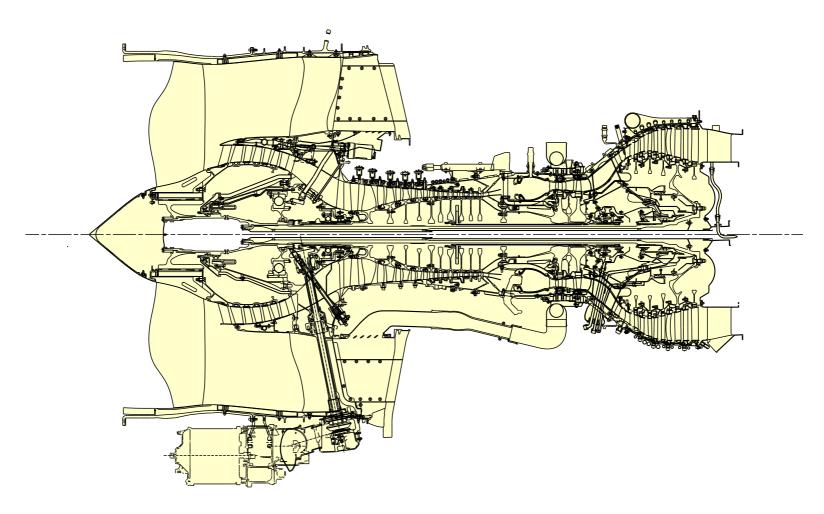
ENGINE - INTRODUCTION

Purpose

The engines supply thrust to the airplane. The engines also supply power to these airplane systems:

- Electrical
- Hydraulic
- · Pneumatic.

Abbreviations and Acronyms


- · AGB accessory gearbox
- · ALF aft looking forward
- BLISK bladed disk (single component)
- CDP compressor discharge pressure
- EDP engine driven pump
- EEC electronic engine control
- EGT exhaust gas temperature
- HP high pressure
- HPC high pressure compressor
- HPT high pressure turbine
- IDG integrated drive generator
- IGB inlet gear box
- LEAP leading edge aviation propulsion
- LPC low pressure compressor
- LPT low pressure turbine
- MFP main fuel pump
- OPT oil pressure and temperature
- P pressure
- PAS pneumatic air starter
- PMA permanent magnet alternator
- RDS radial drive shaft
- SFD squeeze film damper
 EFFECTIVITY

• T - temperature

- TGB transfer gear box
- TS transfer shaft.

ENGINE - INTRODUCTION

2370553 S00061521982_V1

ENGINE - INTRODUCTION

72-00-00

THIS PAGE IS INTENTIONALLY LEFT BLANK

ENGINE - GENERAL DESCRIPTION

General

The LEAP-1B is a high bypass, dual rotor, axial flow turbofan engine. The engine has three major modules; 20 minor modules and an accessory drive module. The engine fan diameter is 69.4 in. (176.3 cm). The bare engine weight is 5830 lb (2644 kg).

The engine has these three major modules:

- The fan major module
- · The core major module
- The low pressure turbine major module.

These are some of the minor engine modules:

- Low pressure compressor (LPC)
- High pressure compressor (HPC)
- · Combustion section
- High pressure turbine (HPT)
- Low pressure turbine (LPT)
- Accessory drive (The accessory drive section is three minor modules, an inlet gearbox, a transfer gearbox and an accessory gearbox).
- · Thrust reverser and exhaust system

The LPC rotor and the LPT rotor are on the same low pressure shaft (N1).

The HPC rotor and the HPT rotor are on the same high pressure shaft (N2).

Low Pressure Compressor (Fan and Booster)

The LPC is a four-stage compressor. The fan is the first stage of compression. The fan increases the speed of the air. The booster is a three-stage compressor. The booster increases the pressure of this air and sends it to the HPC.

The splitter fairing divides the air into these two air flows:

- Primary
- Secondary.

EFFECTIVITY

The primary airflow passes through the inner portion of the fan blades and is directed to the booster. Then it enters the HPC and goes to the combustion chamber. Mixed with fuel and ignited, the gas flow produced provides energy to the HPT and to the LPT. The HPT drives the HPC, and the LPT drives the LPC. This airflow produces about 20 percent of the thrust.

The secondary airflow passes through the outer portion of the fan blades and exits through the fan duct. On the ground at take-off, the secondary airflow makes 80 percent of the engine thrust. The secondary airflow is also used by the thrust reverser system.

High Pressure Compressor (HPC)

The HPC is a ten-stage compressor. It increases the pressure of the air from the LPC and sends it to the combustor. The HPC also supplies bleed air for the aircraft pneumatic system and the engine air system.

Combustion Section

The combustion section mixes air from the compressors and fuel from the fuel nozzles. This mixture of air and fuel burns in the combustion chamber to make hot gases. The hot gases go to the HPT.

High Pressure Turbine (HPT)

The HPT is a two-stage turbine. It changes the energy of the hot gases into mechanical energy. The HPT uses the energy from the hot gases to turn the HPC rotor and the accessory drive.

Low Pressure Turbine (LPT)

The LPT is a five-stage turbine. It also changes the energy of the hot gases into mechanical energy. The LPT uses the energy from the hot gases to turn the fan and booster (LPC).

Accessory Drive

The N2 shaft turns the AGB through the accessory drive. The accessory drive has these minor modules and assemblies:

• Inlet gear box (IGB)

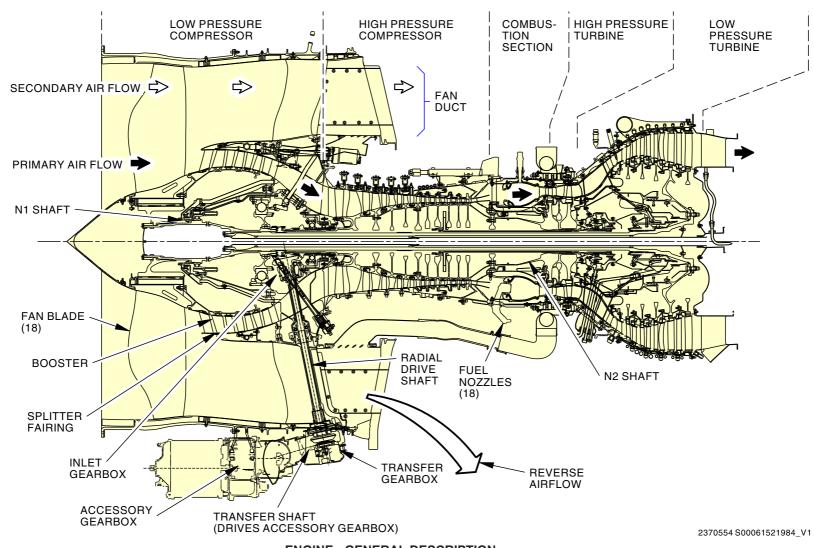
72-00-00

SIA ALL

ENGINE - GENERAL DESCRIPTION

- Transfer gear box (TGB)
- Accessory gear box (AGB)
- Number 3 bearing assembly
- Radial drive shaft (RDS)
- Transfer shaft (TS).

Thrust Reverser and Exhaust System


The thrust reverser uses translating sleeves, blocker doors and cascade vanes to change the direction of the fan air exhaust. The exhaust system uses a nozzle and a plug to direct the exhaust gases.

EFFECTIVITY

72-00-00

SIA ALL

ENGINE - GENERAL DESCRIPTION

ENGINE - GENERAL DESCRIPTION

SIA ALL

D633AM102-SIA

72-00-00

Page 7 Sep 15/2021

LEAP-1B ENGINES

737-7/8/8200/9/10 SYSTEM DESCRIPTION SECTION

ENGINE - MAIN ENGINE BEARINGS

General

Five main engine bearings hold the N1 shaft and the N2 shaft. The bearings are numbered from 1 to 5. The ball bearings absorb the axial (thrust) and radial loads from the shafts. Roller bearings absorb only radial loads.

The main engine bearings are in three oil sumps. The oil sumps are A, B and C from front to rear.

Main Engine Bearings

The A sump has two ball bearings (number 2B and 3B) and two roller bearings (number 1R and 3R).

The B sump has 1 roller bearing (number 4).

The C sump has 1 roller bearing (number 5).

The number 1, 2 and 5 bearings hold the low pressure rotor (N1).

The number 3 and 4 bearings hold the high pressure rotor (N2).

The number 3 bearing assembly has two bearings, the forward bearing is a ball bearing and the aft bearing is a roller bearing.

Sump Seals

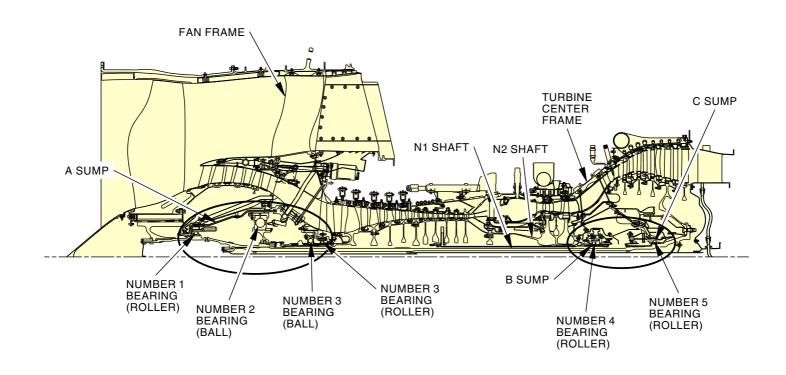
Sump seals prevent oil leaks from the engine sumps.

The front of the A sump is sealed with a segmented radial (carbon) seal (SRS) and a labyrinth seal. An abradable seal upstream of the number 3 bearing seals the middle of the A sump. An SRS seal downstream of the number 3 bearing seals the aft end of the A sump. The A sump is vented to the engine center shaft.

An labyrinth seal upstream and an SRS seal downstream of the number 4 bearing seals the B sump.

An SRS seal upstream and an labyrinth seal downstream of the number 5 bearing seals the C sump.

The B and C sumps are not vented.


EFFECTIVITY

Frames

The fan frame gives support for the number 1, 2 and 3 bearings. The turbine center frame gives support for the number 4 and 5 bearings.

ENGINE - MAIN ENGINE BEARINGS

2370555 S00061521986_V1

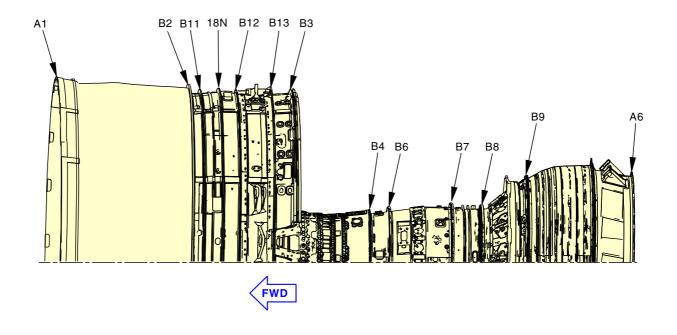
ENGINE - MAIN ENGINE BEARINGS

72-00-00

SIA ALL

ENGINE - ENGINE FLANGE LOCATION

General


The engine has 13 flanges. The flanges are identified with an alphanumeric designation. The flanges hold various accessories and components. The alphanumeric designations are used to find the position of components on the engine.

72-00-00

72-00-00-004

ENGINE - ENGINE FLANGE LOCATION

2370556 S00061521988_V1

ENGINE - ENGINE FLANGE LOCATION

EFFECTIVITY ____

72-00-00

72-00-00-004

ENGINE - ENGINE AERODYNAMIC STATIONS

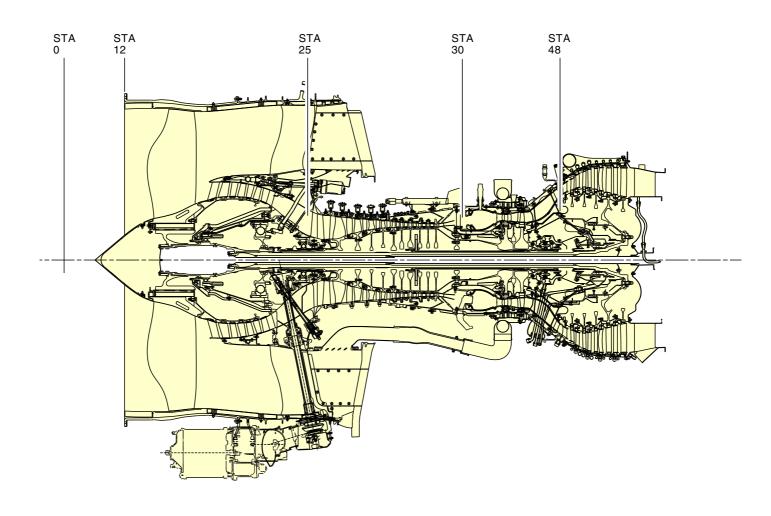
General

There are probes or sensors at these 5 engine aerodynamic stations:

• Station 0. The P0 sensor on the pressure subsystem (PSS) box measures ambient air pressure

LEAP-1B ENGINES

- Station 12. The T12 sensor in the engine inlet measures fan inlet temperature
- Station 25. The T25 sensor measures high pressure compressor inlet temperature
- Station 30. The PS3 and T3 sensors measure high pressure compressor outlet pressure and temperature
- Station 48. The eight T48 (EGT) probes measure temperature at the inlet of the low pressure turbine.


See the engine fuel and control chapter for more information on engine fuel and control. (SECTION 73-00)

See the engine indicating chapter for more information on the probes and sensors. (SECTION 73-21)

EFFECTIVITY

ENGINE - ENGINE AERODYNAMIC STATIONS

2370557 S00061521990_V1

ENGINE - ENGINE AERODYNAMIC STATIONS

72-00-00

ENGINE - ACCESSORY DRIVE - COMPONENT LOCATIONS

General

The accessory gearbox (AGB) is on the left side of the engine, on the fan inlet case. The AGB sends torque from the N2 rotor through spur gears to turn the engine and airplane accessories. They are line replaceable units. You get access to the AGB and the accessories when you open the left fan cowl.

Accessories Locations

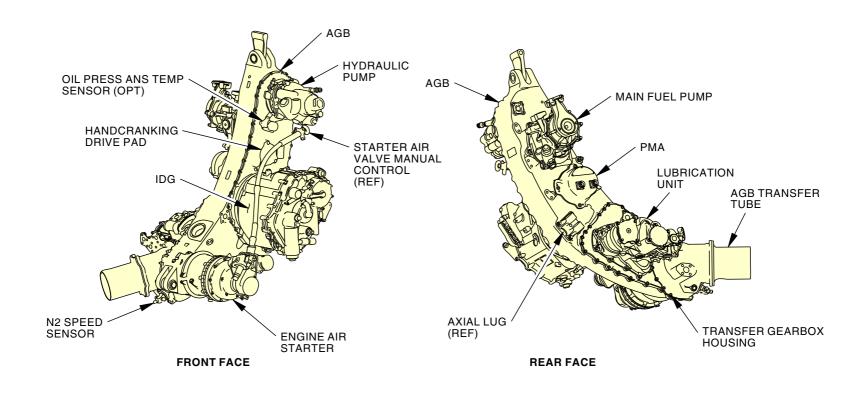
These engine and airplane accessories are on the front face of the AGB:

- Hydraulic pump.
- Oil pressure/temperature sensor (OPT)
- · Handcranking drive pad
- Integrated drive generator (IDG)
- Engine air starter
- N2 speed sensor (bottom end of AGB housing next to starter).

These engine accessories are on the rear face of the AGB:

- · Main fuel pump
- Permanent magnet alternator (PMA)
- Lubrication unit (includes scavenge screen plugs and oil filter cartridge element)

EFFECTIVITY


72-00-00

SIA ALL

Page 14

ENGINE - ACCESSORY DRIVE - COMPONENT LOCATIONS

2370558 S00061521992_V1

ENGINE - ACCESSORY DRIVE - COMPONENT LOCATIONS

72-00-00

72-00-00-006

LEAP-1B ENGINES

737-7/8/8200/9/10 SYSTEM DESCRIPTION SECTION

ENGINE - FAN BLADES AND FRONT SPINNER CONE

Front Spinner Cone

The front spinner cone is an aerodynamic fairing that gives a smooth surface for airflow to the fan stage. The spinner cone keeps ice build-up to a minimum and decreases noise level. It is an anodized aluminum alloy. The front spinner cone attaches to the platform front shroud with 9 screws.

Fan Blades

There are 18 wide chord composite blades with titanium leading edges. Each blade has a dovetail that goes into a recess on the fan disk. Composite wear strips interface between the fan blade and the fan disk. It is not necessary to lubricate the fan blade root.

Spacers hold each fan blade in the correct radial position. The spacers are made of composite material. They hold the fan blades in the static position. Titanium and honeycomb fan blade locks hold the blades axially. The fan blade locks are at the front of the fan blade root. Platforms are between each fan blade. The removal of the front spinner cone and the platform front shroud is necessary when you remove one or more fan blades.

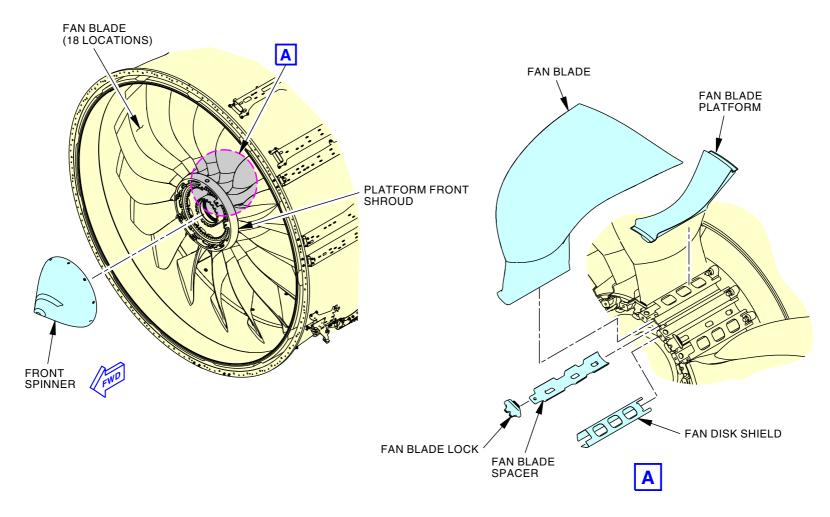
From the engine inlet, the engine fan blades are numbered in a counterclockwise direction.

This information is engraved on each fan blade:

- Manufacturing S.N. (Bottom of metal leading edge close to fan blade platform convex suction side)
- Blade Serial number (Top of metal leading edge and on the side of the blade shank concave pressure side)
- Moment weight (Blade shank not visible when fan blade platform is installed concave pressure side).

When you remove or replace fan blades, record the position and the serial number of the blades. That lets you do these tasks:

- Install the blades you removed in the same position to keep the engine in balance
- Calculate the spare blades position and the momentum weight correction when you replace blades.


Balance Weight Screws

Balance procedures for the fan blades use different weight balancing screws installed in the platform front shroud under the spinner.

72-00-00

ENGINE - FAN BLADES AND FRONT SPINNER CONE

2370559 S00061521994_V1

ENGINE - FAN BLADES AND FRONT SPINNER CONE

72-00-00